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5.0 Nombor Rawak 
 

5.0.0  Kerawakan 
 
Suatu pembolehubah rawak boleh mengambil nilai tertentu daripada yang dibolehkan (mungkin 

daripada suatu julat selanjar), yang tak boleh diramalkan. Namun taburan kebarangkalian nilai-nilai 
ini boleh diketahui. 
 

Kebarangkalian nilai pembolehubah rawak u' berada di antara u dan u+du ditandakan 
P(u < u' < u+du). 

Kita tulis  

P(u < u' < u+du) = g(u)du 

di mana g(u) adalah fungsi ketumpatan kebarangkalian bagi nilai itu. Kita boleh tulis 

   𝐺(𝑢) = ∫ 𝑔(𝑥)𝑑𝑥
𝑢

−∞
  ataupun  𝑔(𝑢) =

𝑑𝐺(𝑢)

𝑑𝑢
, 

dengan G meningkat secara ekanada daripada 0 kepada 1. 
 

Nilai jangkaan suatu fungsi f(u') adalah nilai min atau puratanya, iaitu, 

   𝐸[𝑓] = ∫ 𝑓(𝑢)𝑑𝐺(𝑢) = ∫ 𝑓(𝑢)𝑔(𝑢)𝑑𝑢 

Kalau u' bertaburan seragam antara a dan b, iaitu dG = du/(b-a), maka 

  𝐸[𝑓] =
1

𝑏−𝑎
∫ 𝑓(𝑢)𝑑𝑢
𝑏

𝑎
 

Juga, 

  𝐸(𝑢′) = ∫ 𝑢 𝑑𝐺(𝑢) = ∫𝑢 𝑔(𝑢) 𝑑𝑢. 

 

Varians suatu taburan pula ialah purata bagi kuasadua sisihan daripada jangkaan, 

  𝑉[𝑓] = 𝐸[(𝑓 − 𝐸[𝑓])2] = ∫ (𝑓 − 𝐸[𝑓])2𝑑𝐺 = 𝐸[𝑓2] − 𝐸[𝑓]2 
 Ia mencirikan ‘lebar’ taburan. Sisihan piawai,  

 = √(varians) 

 

Perhatikan bahawa min berbentuk linear, 
  E(cx+y) = cE(x) + E(y) 
namun  

  V(cx+y) = c2V(x) + V(y) + 2cE[(y-E(y))(x-E(x)]. 
 

Dua pembolehubah rawak u dan v dikatakan bebas di antara satu sama lain, secara stokastik, jika 
fungsi ketumpatan kebarangkalian bersama, di antara keduanya, g(u,v) boleh ditulis sebagai 

pendaraban, g1(u).g2(v) katakan. 

 
Jika x dan y bebas, 

  V(x+y) =V(x) + V(y) 
yakni, 

  x+y = √(x
2+y

2). 

 

Hukum bilangan besar menyatakan, 

  
1

𝑛
∑ 𝑓(𝑢𝑖)
𝑛
𝑖=1 𝑛→∞

→   
1

(𝑏−𝑎)
∫ 𝑓(𝑢)𝑑𝑢
𝑏

𝑎
 . 



Purata sesuatu fungsi f, dalam had bilangan besar data, menupu kepada nilai jangkaannya. Antara 
lain, ini bermakna, kaedah anggaran ‘Monte Carlo’ (MC), iaitu pengiraan sifat-sifat f menerusi 
penjanaan nombor-nombor rawak (biasanya berkomputer) menurut taburan f adalah anggaran yang 

konsisten. Anggaran-anggaran ini menumpu dengan bertambahnya sampel. Adalah, 

• Jika varians  V(f) terhad, anggaran MC → nilai sebenar 

• Nilai jangkaan E(f) tak pincang untuk apa-apa saiz sampel n 
 

Kemudian, ada Teorem Had Pusat, yang menyatakan, 
 bila n besar, E(f) menghampiri taburan normal, 

dan 

sisihan piawai bagi E(f) ialah  = √V(f)/√n. 

 

5.0.1  Nombor Rawak Sebenar 
 

Nombor rawak sebenar tak boleh diramalkan, maka ia tak boleh dijanasemula secara berketentuan, 

secara bersendiri ataupun dalam bentuk siri. Ia diperolehi daripada proses rawak dalam fizik, 
misalnya reputan radioaktif, hingar terma dalam elektronik, ketibaan sinar kosmos, dan lain-lain. 
 

Unsur kerawakan fizik termasuk: fenomena kuantum, dinamik kalut, sistem stokastik. Parameter 
rawak daripada sistem fizik ini perlu dituai. 

 
Ada parameter fizikan yang hampir rawak, yang timbul daripada kerumitan mengira perkembangan 
tertentunya. Misalnya, digit mikrosaat dalam masa komputer semasa secara asasnya berketentuan, 

namun setelah beberapa operasi aras tinggi komputer, kita tak dapat meramalkannya secara kasar. 
 

Set nombor-nombor rawak boleh diperbaiki untuk memberikan taburan yang lebih baik. Misalnya, 
walaupu suatu set itu punyai nombor-nombor rawak dalam ertikata tiada korelasi di antara nombor-
nombor ini, taburannya mungkin terpincang. Pembuangan pincang boleh dilakukan seperti berikut. 

Sebagai contoh, kita ada jujukan rawak 0 dan 1, tetapi mungkin P(0) dan P(1) tak setepatnya ½. 
Caranya di sini ialah, lihat pasangan bit dalam jujukan: jika ianya sama, abaikan, dan jika ia berlainan, 

pilih bit kedua. Perhatikan bahawa jika P(01) = P(0)×P(1) = P(10) (tiada korelasi antara bit dalam 
jujukan), kebarangkalian  baru P'(0) = P(1)×P(0) dan P'(1) = P(0)×P(1), iaitu sama. 

 

5.0.2  Nombor Pseudorawak 
 
Nombor pseudorawak dijana menerusi rumus matematik untuk meniru penghasilan nombor-nombor 

rawak. Ia secara prinsipnya boleh dijanasemula, makai a tidak sebenarnya rawak. Namun ia tak dapat 
dibezakan daripada jujukan yang rawak sebenar. 
 

Walaubagaimanapun, oleh kerana rumus yang digunakan yang biasanya bergantung kepada nilai 
janaan semasa, suatu nombor tertentu bakal memberikan jujukan nombor-nombor janaan berikut 

yang sama bagi nombor pertama yang sama. Kala sesuatu rumus penjana itu merujuk kepada berapa 
nombor ‘rawak’ diberikan sebelum jujukan diulang. 
 

Suatu kaedah penjanaan nombor pseudorawak ialah Kaedah Tengah Kuasadua: 
  Mula dengan nombor dengan r digit (benih) 



Berikan nombor di digit tengah (r/2) sebagai nombor rawak pertama 
Kuasaduakan nombor ini, memberikan nombor baharu berdigit r. 
Ulang. 

 
Modifikasi kaedah ini ialah Kaedah Kongruenan Daraban/Kongruenan Linear. Di sini, kita bermula 

dengan tetapan nilai-nilai modulus m, pekali a, dan pemula r0. Nombor rawak dijana menerusi lelaran 
  ri = a ri-1 (mod m) 
Biasanya m dipilih supaya pendaraban dua integer berbit t dimoduluskan memberikan integer t bit 

terendah. Kaedah ini punyai kala yang menghampiri m/4. 
 

Kita boleh juga gunakan Kongruenan Bercampur, dengan 
  ri = (a ri-1 + b) (mod m) 
 

Untuk kaedah-kaedah penjanaan nombor pseudorawak, kitab oleh uji kerawakan nombor-nombor 
yang dijana. Misalnya, purata untuk n nombor pertama boleh digunakan. Perubahan nilai ini terhadap 

n boleh disiasati. 
 
Penjana kongruenan ada kemungkinan menunjukkan kesan Marsaglia. Kesan ini ialah apabila 

kerawakan dipaparkan dalam satu dimensi, tetapi terlihat korelasi dalam dimensi lebih tinggi. 
Korelasi ini ditunjukkan apabila d tupel berturutan diplot dalam d dimensi, berada di atas bilangan 

terhad hipersatah selari. Kesan ini didapati dalam kongruenan daraban, Kesan ini boleh dicuba 
dikurangkan dengan membanyakkan hipersatah menerusi Kongruenan Daraban Majmuk, dengan 
  ri = (a ri-1 + b ri-2) (mod m).     

  

5.0.3  Nombor Kuasirawak 
 
Nombor kuasirawak ialah nombor pseudorawak yang tidak begitu rawak, dengan hanya kerawakan 

yang mencukupi untuk pengiraan yang hendak dijalankan. Misalnya, kadang-kadang sesuatu 
pengiraan tak perlu kebebasan dalam jujukan yang digunakan, dan kadang-kadang darjah turun-naik 
tak begitu penting dalam sesuatu pengiraan. 

 
Contoh-contoh kaedah penjanaan nombor kuasirawak adalah jujukan Korobov, penjana Richtmeyer, 

dan penjana van der Corput. 

 
5.0.4  Pengurangan Varians 
 

Set nombor-nombor rawak yang tinggi varians mencerminkan taburan yang kurang menumpu. 
Varians boleh dikurangkan dengan memilih n besar dan memilih cara penyampelan. Cara pertama 

jelas, daripada teorem had pusat. Ada beberapa kaedah cara kedua, termasuk yang berikut. 
 
Dalam penyampelan berlapis, dibelahkan kamiran pengiraan kepada subselang, dan kemudian 

dihasiltambahkan separa hasiltambah. Varians keseluruhan ialah hasiltambah varians, yang boleh 
berkurang atau bertambah. Yang termudah ialah pelapisan seragam. 

 
Untuk penyampelan kepentingan pula, ambil bilangan sampel lebih banyak dalam rantau f lebih 
besar: 



𝑓(𝑥)𝑑𝑥 →
𝑓(𝑥)

𝑔(𝑥)
𝑑𝐺(𝑥) 

Ini macam perubahan pembolehubah. 

 
Bagi variat pengawal, kamiran ditulis 

  ∫ 𝑓(𝑥)𝑑𝑥 = ∫ (𝑓(𝑥) − 𝑔(𝑥))𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 

di mana sebutan kedua sebelah kanan diketahui, dan g(x) hampir kepada f(x). Ini memberikan varians 

hanya akibat daripada sebutan pertama, dan ianya kecil. 
 

Untuk variat antitetik, nombor rawak yang tak bebas digunakan. Bahkan yang punyai korelasi negatif 
dipilih. Sebagai contoh, dalam menghasiltambah f(x), pilih f(x) bila x kecil, dan pilih f(1-x) bila x 
besar, bagi x yang seragam antara 0 dan 1.  

 
Ada juga kaedah pengurangan varians suaian. Dalam kaedah oleh Sheppey dan Lautrup, disuaikan 

saiz lapisan menurut besarnya f di rantau berkenaan di mana dikecilkan saiznya bila f besar. Dalam 
kaedah oleh Friedman, ada fasa tinjauan di mana pelapisan dibuat, dan fasa penilaian di mana 
penilaian dibuat. 

 
 

 
 . 
  

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 
 

 
 



5.1 Proses Rawak 
 

5.1.0  Ciri proses rawak 
 
Proses-proses rawak punyai bebarapa ciri. 

 
Ia bersifat stokastik, Ia bertelatah rawak namun boleh dianalisis secara statistik, tetapi tidak boleh 
diramalkan secara tepat. 

 
Jika kebarangkalian keadaan suatu sistem stokastik bergantung kepada keadaan sebelumnya, dan 

hanya keadaan sebelumnya itu ia Markovan. Ia disebut proses Markovan atau rantaian Markovan, 
dan boleh diwakilkan dalam bentuk gambarajah keadaan, contohnya, 

   
Tulis kebarangkalian peralihan sebagai T(X→X’). Maka 

  X’ T(X→X’) = 1  

Bagi proses bukan Markovan dalam ertikata ia bebas dan takterkorelasi, kebarangkalian jujukan 
tertentu 

  PN(X1, X2, …, XN) = P1(X1).P1(X2)….P1(XN) 
untuk jujukan X1, X2, …, XN, di mana kebarangkalian P1 sama, tak berubah. 

 
Sesuatu proses itu disebutergodik jika mana-mana tatarajah atau keadaan itu boleh didatangi daripada 
mana-mana tataraja h lain. Ini bermakna tiada perkalaan yang membabitkan subset tatarajah-tatarajah 

ini. 

 
5.1.1  Pergerakan Brownan dan perjalanan rawak 
 

Proses pergerakan Brownan mewakili pergerakan rawak yang dipaparkan oleh zarah-zarah kecil yang 
terampai dalam cecair. Ini diperihalkan oleh perjalanan rawak. 

 
Pergerakan Brownan adalah proses stokastik yang Markovan. Keadaan semasa tidak bergantung 
kepada sejarah sistem. Suatu pergerakan Brownan diperihalkan oleh kebarangkalian bergerak pada 

sesuatu arah dengan sesuatu jarak. Boleh dicari, selepas beberapa masa tertentu, fungsi taburan 
kebarangkalian bagi jarak dari titik asal. 

 
Pergerakan Brownan atau perjalanan rawak ini boleh digunakan untuk memerihalkan pelbagai 
proses, termasuk untuk model bagi turun-naik jangka pendek pasaran saham. 

 



5.1.2  Proses mencabang 
 

Proses mencabang berlaku dalam satu sistem bila jujukan penjanaan nombor rawak boleh melalui 
jalan yang bercabang. 
 

Contoh proses mencabang ialah reproduksi. Ia berjalan seperti berikut: 
 1. Pada t = 0, Z0 = 1. 

 2. Pada t = 1, Z0 (kalau bukan 0) → Z1 = nombor rawak menurut “taburan anak”  

3. Pada t = 2, Z1 (kalau bukan 0) → 𝑍2,1, 𝑍2,2, … , 𝑍2,𝑍1  setiapnya spt (2.) 

Ulang 
 

Ia adalah suatu proses Markovan. 
 

Satu lagi contoh ialah model penyebaran penyakit. Setiap individu yang dijangkiti mempunyai 
kebarangkalian rawak tertentu untuk menjangkiti jirannya sebelum dia pulih atau mati. Penyebaran 
penyakit ini  menghasilkan proses bercabang di mana ia berlanhutan dengan seiap generasi 

menghasilkan lebih ramai individu yang dijangkiti. Ia berakhir dengan kepunahan di mana semua 
jangkitan hilang, atau pandemik di mana kebanyakan individu dijangkiti. 

 

5.1.3  Ketelusan/Perkolasi 
 
Ini relevan bagi rangkaian unsur-unsur Telatah perkolasi berlaku apabila nod/patuan memamerkan 

perubahan fasa daripada gugusan-gugusan kecil tak bersambung kepada gugusan rentang besar, 
seperti contoh di bawah, 

 
Perkolasi boleh digunakan sebagai model untuk bahan, jangkitan penyakit, dan sebagainya. 

 
Ia juga merupakan proses yang Markovan. 

 

5.1.4  Cerucuk Pasir 
 
Ini suatu model di mana keruntuhan pasir dalam cerucuk dibayangkan. Ada jujukan sela dengan 

amaun ‘pasir’ amsing-masing. Pasir dijatuhkan ke atas sela yang paling hulu. Jika cerun pasir di 
antara dua sela terlalu besar, pasir dari sela yang lebih runtuh ke sela yang sebelahnya itu. 
 

Model ini digunakan untuk mengkaji kegentingan terswaorganisasi. Ini adalah di mana keadaan 
genting muncul secara organisasi dalaman, tanpa kawalan luar. 

 



5.1.5  Permainan, Rangkaian, Sosiofizik 
 

Ada usaha untuk memamahami sistem kompleks di dalam fizik, kimia, biologi dan sosiologi sebagai 
sistem stokastik. 
 

Automaton bersel, atau permainan kehidupan, memodel kerjiranan sel-sel yang mempengaruhi di 
antara mereka. Keadaan sesuatu sel (diwakili nilai tertentu) bergantung kepada keadaan jiran -

jirannya menerusi misalnya suatu fungsi logik diberi. Misalnya, bagi sel-sel dalam satu dimensi 
ruang, diwakili suatu vektor nilai-nilai, keadaan sesuatu sel berubah menurut hukum seperti, 
misalnya, yang berikut ini, 

 

pola semasa 3 sel berjiranan 111 110 101 100 011 010 001 000 

keadaan baharu sel tengah 0 0 0 1 1 1 1 0 

 
Hukum ini disebut hukum 30, kerana nombor dedua 000111110 ialah perpuluhan 30. Rajah di bawah 

menunjukkan evolusi suatu tatasusunan sel-sel (mengufuk) terhadap masa (menegak ke bawah), di 
mana sel gelap mewakili keadaan 1 dan terang keadaan 0, bermula dengan hanya satu sel di tengah 
tatasusunan bernilai 1, menurut hukum ini. 

 
 
 

Bagi automanton bersel ini, sel-sel atau agen-agen di atas kekisi bersalingtindak menerusi logik. 
Salingtindak lebih rumit boleh diadakan, dengan menggunakan permainan. Dalam permainan, ada 
jadual habuan daripada pilihan perubahan keadaan sesuatu agen, bergantung kepada pilihan ‘pemain’ 

atau agen lain. Contoh permainan ialah dilemma banduan di antara dua agen, yang setiapnya boleh 
memilih samada ‘bekerjasaama’ atau ‘berpaling tadah’. Jadual habuan permainan ini diberikan di 

bawah, dengan habuan-habuan P, R, S dan T mewakili nilai-nilai diberikan: 



 
 

Agen-agen atas kekisi bolehlah menjalankan permainan bersama jiran-jiran. Mungkin agen-agen 
ini memajukan suatu strategi dalam pilihan tindakan yang boleh memberikan habuan yang besar 

dalam evolusi mereka terhadap masa. 
 

Untuk model yang lebih rumit, salingtindak antara agen-agen atau unsur-unsur boleh diperihalkan 
oleh rangkaian, dan bukan hanya berjiranan di atas kekisi. Struktur rangkaian itu sendiri 
menambahkan kerumitan dan kesan-kesan tambahan. 

    
Model-model seperti ini digunakan dalam mewakili sistem social dan sistem ekonomi sebagai 

sistem stokastik. 
 
 

  
 

 
 

 

 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 



5.2 Monte Carlo 
 

5.2.0  Kaedah 
 
Secara kasar, kaedah Monte Carlo ialah suatu cara penyelesaian masalah menggunakan nombor 

rawak. 
 

Dalam kaedah Monte Carlo, penyelesaian diwakilkan sebagai parameter suatu populasi hipotesisan.  

Jujukan nombor rawak digunakan  untuk membina suatu sampel populasi berkenaan, daripada mana 
anggaran statistikan parameter tersebut boleh didapati. 

 
Ia tidak terhad kepada masalah stokastik sahaja. Ia berguna terutama bagi masalah-masalah dengan 
bilangan darjah kebebasan besar, atau berdimensi besar. 

 
Secara formalnya, kaedah Monte Carlo ialah kaedah kamiran, berasaskan hukum bilangan besar. 

Kalau hasil Monte Carlo ialah fungsi nombor rawak, F(r1,r2,…,rn), maka jangkaan F ialah kamiran 
I, 

   𝐼 =  ∫ … ∫ 𝐹(𝑥1,𝑥2,… , 𝑥𝑛)𝑑𝑥1𝑑𝑥2… . 𝑑𝑥𝑛 
Sebagai contoh, 

   𝑆 = ∫ 𝑓(𝑥)𝑑𝑥
1

0
. 

Maka  

   𝑆 ≅
1

𝑁
∑ 𝑓(𝑥𝑛)
𝑁
𝑛=1  

di mana xn ialah set N nilai daripada nombor rawak seragam dalam selang [0,1]. 
 

Pada banyak kes, taburan kebarangkalian tak seragam diperlukan. Untuk menjana nombor rawak 
menurut taburan tertentu,f(x), dengan f(x)dx mewakili kebarangkalian untuk memperolehi nilai antara 
x dan x+dx, boleh digunakan beberapa cara. 

 
 Kaedah transformasi songsangan adalah seperti berikut. Katakan taburan untuk x diperolehi dengan 

mentransformasikan u, di mana u ialah nombor rawak dengan taburan seragam g(u)=1 antara 0 dan 
1, menurut x = F-1(u). Ataupun, u = F(x). Oleh kerana f(x)dx = g(u)du, maka 

 f(x) = g du/dx = dF/dx. 

Sebagai contoh, pertimbangkan 
 f(x) = (1/β)exp(-x/β). 

Jadi, 
   F(x) = 1-exp(-x/β) = u 
atau 

   x = -β ln (1-u). 
Maka, untuk mendapatkan set nombor rawak bertaburan (1/β)exp(-x/β), secara berulang pilih u secara 

rawak di antara 0 dan 1, dan kemudian kira x = -β ln (1-u). 
 
Bagi kaedah gubahan, pecahkan fungsi taburan kebarangkalian kepada hasiltambah fungsi-fungsi 

taburan kebarangkalian yang mudah dibuat. Contoh, 
 f(x) = (5/12)[1 + (x-1)4]; 0 ≤ x ≤ 2. 

Pecahkan, 



   fa(x) = ½ 
fb(x) = (5/2)(x-1)4 

dengan  

f(x) = (5/6) fa(x) + (1/6) fb(x).   
Perhatikan hasiltambah pekali bersamaan 1. Dijana nombor rawak u1: jika u1 < 5/6, guna fa –  jana 

u2, x = 2 u2; jika u1 > 5/6 guna fb – jana u2, x = 1 + 5√(2u2). 
 
Kaedah yang umum untuk apa-apa taburan rawak ialah kaedah penerimaan-penolakan atau kaedah 

von Neumann. Dua nombor rawak seragam u1 dan u2 dijana sekaligus. Terima x = u1 jika u2 < f(u1) 
yakni jika titik (u1, u2) di bawah lengkung kebarangkalian. Dengan itu, kadar penerimaan sesuatu 

nombor rawak itu diberikan kebarangkalian diberi f(x). 

 
Ketakcekapan kaedah ini timbul bila bentuk f(x) tidak seimbang dalam ertikata sebahagiannya 
mempunyai nilai sangat tinggi sementara bahagian yang lain mempunyai bahagian sangat rendah – 

banyak calon ditolak apabila dijana dalam bahagian f(x) rendah. Ini boleh diatasi dengan 
menggunakan kaedah gubahan yang menggubah dua bahagian ini, dan kaedah von Neumann untuk 

setiap bahagian itu. 
 
Untuk menjana nombor rawak bertaburan Gaussan, kita boleh buat menerusi Teorem Had Pusat. 

Teorem ini menyatakan bahawa hasiltambah nombor-nombor ralat menurut apa-apa taburan akan 
memberikan taburan Gaussan dalam had bilangannya besar. Sebagai contoh, taburan seragam antara 

[0,1] boleh dipilih. Untuk taburan ini, nilai jangkaan ialah ½ , dan variansnya ialah 1/12. Jika 
dihasiltambahkan n nilai-nilai ini,  
    E(Rn) = n/2,  

V(Rn) = n/12.  
Untuk memperolehi taburan Gaussan dengan min 0 dan varians 1, bolehlah digunakan   sebagai 

nombor rawak dijana. 
 

 

5.2.1  Monte Carlo variasian 
 
Monte Carlo variasian adalah teknik statistik yang digunakan untuk menghampiri penyelesaian 
kepada masalah pengoptimuman atau pengiraan integral yang kompleks, terutamanya dalam sistem 

kuantum dan simulasi fizik. Teknik ini melibatkan penggunaan kaedah Monte Carlo untuk menjana 
sampel rawak daripada ruang tatarajah yang luas, dan kemudian menggunakan kaedah variasian 

untuk mengoptimumkan parameter-parameter yang tertentu dalam persamaan gelombang atau model 
yang digunakan. Dengan pendekatan ini, hasil perkiraan penyelesaian masalah dapat ditingkatkan 
melalui proses peminimuman tenaga atau peminimuman ralat. Teknik ini amat berguna apabila 

penyelesaian analisisan tepat tidak praktikal atau sukar diperoleh. Hasil pengiraan menjadi lebih tepat 



dengan peningkatan bilangan sampel yang diambil. 
 
Sebagai contoh, dalam kajian sistem kuantum seperti atom hidrogen, Monte Carlo variasian 

digunakan untuk mengira tenaga keadaan asas atom tersebut. Kita mula dengan memilih fungsi 
gelombang uji yang mengandungi parameter yang boleh diubahsuai. Sebagai contoh, fungsi 

gelombang boleh berbentuk (r,), di mana  adalah parameter variasian yang kita ingin 

optimumkan. 

 
Dengan menggunakan teknik Monte Carlo, kita jana pelbagai tatarajah rawak untuk elektron di 
keliling nukleus atom. Bagi setiap tatarajah, kita kira tenaga sistem berdasarkan hamiltonan sistem 

dan fungsi gelombang uji. Kemudian, kita suaikan nilai  untuk meminimumkan tenaga purata yang 

diperoleh dari sampel rawak tersebut. 

 
Proses ini memberikan anggaran tenaga keadaan asas yang mendekati nilai sebenar. Teknik Monte 

Carlo variasian menjadi sangat berkesan apabila bentuk fungsi gelombang uji dipilih dengan teliti, 
mengurangkan ralat yang timbul daripada pendekatan rawak yang d ibuat. 

 

5.2.2  Simulasi Monte Carlo 
 
Simulasi sesuatu sistem ialah kamiran pergerakan sistem berkenaan terhadap masa, memberikan 

evolusinya. Persamaan-persamaan pergerakan biasanya berbentuk persamaan pembezaan terhadap 
masa. Kamiran terhadap masa memberikan nilai kedudukan dan sebagainya, selepas masa yang 
dikehendaki. 

  
Guna simulasi stokastik untuk simulasi suatu sistem yang banyak darjah kebebasan atau berdimensi 
tinggi, atau/dan sistem yang punyai kandungan rawak. Sesetengah sistem misalnya sistem fizik 

statistik, sistem kuantum, mempunyai persamaan pergerakan yang mengandungi kebarangkalian. 
Penyelesaian sistem ini biasanya membabitkan penerbitan taburan kebarangkalian untuk keadaan-

keadaan akhir. Ini boleh dilakukan menerusi kaedah Monte Carlo – banyak cubaan atau salinan kes 
penyelesaian dilakukan, dan bagi setiap cubaan itu, apabila kebarangkalian terbabit, satu nilai dipilih 
menurut kebarangkalian yg diberikan itu (jadi bila dikumpulkan, cubaan-cubaan ini akhirnya 

memberi taburan kebarangkalian tersebut).  
 

Bila pergerakan ditentukan kebarangkalian di sebilangan tahap – kaedah ini menghasilkan lipatan 
kebarangkalian. Di setiap tahap, nilai rawak dijana menurut kebarangkaliannya pada tahap itu dalam 
sistem. Ia setara dengan kamiran terhadap sebilangan ‘cubaan’ untuk memberikan taburan 

kebarangkalian yang memerihalkan tahap berkenaan. Jumlah jujukan ‘cubaan’  di tahap berurutan 
memberikan taburan kebarangkalian akhir, iaitu lipatan kebarangkalian tahap-tahap berlaku. 

 

Contoh, pertimbangkan simulasi Monte Carlo berikut untuk reputan pion bercas negatif, -, yang 

bergerak dengan halaju 1109 meter sesaat katakan, dalam arah tertentu. Ia mereput dengan masa 

hayat 2.610-8 saat, kepada muon - dan neutrino muon  (99.99 %) atau kepada elektron e- dan 

neutrino elektron e (0.01 %). Pada tahap pertama, kita jana nilai rawak untuk masa reputan, dengan 

taburan eksponen negatif dengan masa hayat yang diberikan. Masa ini memberikan jarak pion telah 

bergerak sebelum mereput. Kemudian jana nomboh rawak untuk membuat pilihan di antara dua 
saluran reputan, menurut kebarangkalian diberikan. Kemudian, pilih arah rawak zarah reputan, 

samada muon atau elektron, dikeluarkan. Keabadian momentum menentukan magnitud momentum 



zarah-zarah reputan, dan arah neutrino reputan. Setiap ‘cubaan’ memberikan satu keadaan akhir zarah 
reputan. Banyak-banyak cubaan memberikan taburan akhir keseluruhan. Ini ditunjukkan secara 
skema di bawah. 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 



5.3 Kaedah Metropolis 
 

5.3.0  Asas 
 
Kaedah Metropolis menggunakan rantaian Markovan.  Ia sebenarnya penyampelan kepentingan, iaitu 

keadaan dalam jujukan dijana mengambilkira nisbah kebarangkalian. 
 

Ia boleh diwakilicsuatu persamaan induk: 

  𝜌(𝑋, 𝑡 + 1) − 𝜌(𝑋, 𝑡) = −∑ 𝑇(𝑋 → 𝑋′)𝜌(𝑋, 𝑡) + ∑ 𝑇(𝑋′ → 𝑋)𝜌(𝑋′, 𝑡)𝑋′𝑋′  

di mana 

  (X,t) = kebrangkalian berlaku X pada masa t. 

Pada taburan pegun,  (X,t+1) = (X,t). 

iaitu 
  ∑ 𝑇(𝑋 → 𝑋′)𝜌(𝑋, 𝑡) = ∑ 𝑇(𝑋′ → 𝑋)𝜌(𝑋′, 𝑡)𝑋′𝑋′ . 

Satu penyelesaian ialah, 

  T(X → X')(X) = T(X' → X)(X'). 

Persamaan ini mewakili apa yang disebut keseimbangan terperinci. 

 
Boleh digunakan 

 T(X → X') = wXX’AXX’  

dengan wXX’ bersimetri; dalam selang [0,1]; SX’ = 1. AXX’ ialah kebarangkalian penerimaan. Jadi, 

  
𝐴𝑋𝑋′

𝐴𝑋′𝑋
=
𝜌(𝑋′)

𝜌(𝑋)
. 

 

5.3.1  Algoritma 
 
Demikian ialah algoritma bagi kaedah Metropolis: 

• Jana keadaan baru X’ menggunakan wXX’ 
- kebarangkalian langkah cubaan 

• Tolak/terima menggunakan AXX’ 

- terima dgn kebarangkalian (X’)/(X); 1 jika (X’) > (X) 

 
Untuk memperolehi ensembel kanunan sesuatu sistem, guna faktor Boltzmann, 

  (X)  exp[-E(X)] 

di mana E ialah tenaga, dan 

   = 1/(kBT)  

ialah suhu songsangan, dengan kB pemalar Boltzmann, dan T suhu. Dengan itu, keadaan yang paling 

berkebarangkalian ialah yang dengan paling rendah E. Maka kaedah Metropolis mengevolusi sistem 

ke arah keadaan E terendah, dengan kadar tumpuan  Jika E(X) = E1(x1) + E2(x2) + … iaitu 

hasiltambah tenaga-tenaga mikrokeadaan, 

  P(xi)  exp[-E(xi)]  

jika  yang lain tak berubah. Jadi 

  (X’)/(X) = (xi’)/(xi) = exp(-Ei). 

Perubahan sistem diberi kesan jumlah perubahan mikrokeadaan secara individu. 



 

5.3.2  Isu 
 
Ada beberapa isu yang timbul dengan kaedah Metropolis ini. Untuk menghargai ini, mari kita fahami 

dinamik kaedah ini.  
 

Setiap langkah kaedah Metropolis menjada keadaan mengikut kebarangkalian yang berkadaran 

dengan exp[-E(X)]. Ini bermakna, lebih mungkin ia berubah kepada keadaan dengan E yang lebih 

rendah. Bahkan, bila T → 0, ataupun  → , ia semestinya berubah kepada keadaan sedemikian. 

Maka dinamiknya,dalam ruang keadaan sistem, menurun dalam ‘lanskap’ tenaga, seperti dalam rajah:  

 

 
 
Bila lanskap tenaga lebih kompleks dan tidak semudahnya mencembung, seperti contoh di bawah, 
jujukan keadaan terjana mungkin tidak sampai kepada minimum tenaga sejagat seperti yang 

dikehendaki, tetapi terlekat dalam minimum tempatan. Ini terpakai terutama untuk T = 0. Lihat rajah 
di bawah. 

 
Jika minimum sejagat yang dicari, dan T boleh dipilih, maka protokol sepuhlindah tersimulasi boleh 
digunakan. Mula-mula T disetkan tinggi, yang membolehkan keadaan berkebarangkalian memanjat  

cerun E, supay dapat mengatasi batas di antara minimum, dan kemudian perlahan-lahan dikecilkan. 
(Ini seperti proses sepuhlindap dalam fizik bahan). 

 



 
 
Kemudian, ada fenomena pemerlahanan gentingan. Pada keadaan-keadaan yang menghampiri 
keadaan genting, sistem yang mengalami usikan kecil mengambil masa yang lama untuk kembali ke 

keadaan kesimbangan. Kecerunan tenaga rendah. Kestabilan sistem melemah apabila ia mengampiri 
kegentingan. Dengan kaedah Metropolis, keadaan-keadaan yang diterokai hanya yang berhampiran 

keadaan semasa, jadi kecekapan kaedah ini meneroka ruang kemungkinan yang besar menjadi 
perlahan dan kuang cekap. 
 

Bagi sistem tak teratur dengan ketakteraturan lindap-kejut (ketakteraturan yang beku terhadap masa), 
janaan sebilangan replika sistem dibuat untuk mendapat nilai jangkaan, menerusi pemurataan. 

 
 

 

  
 

 
 
 

 
 

 
 
    

 
 

 
 
 

 
 

 
 



5.4 Beberapa Sistem Statistikan 
 

5.4.0 Asas 
 
Guna algoritma Metropolis untuk mengsimulasi sistem. 

 

5.4.1 Model Gas Ekatom 
 
Dalam pengiraan tatarajah, tiada pertimbangan dinamik dibuat. 

 
Guna kebarangkalian menurut tenaga tatarajah. Optimumkan tatarajah terhadap tenaga. Suatu 

langkah cubaan membabitkan satu atom, yang dialihkan ke kedudukan tertentu dalam ruang tertentu. 
Langkah itu diterima atau ditolak menurut kebarangkalian daripada faktor Boltzmann. 

 

5.4.2 Model Ising 
 
Ini terdiri daripada nnsembel darjah kebebasan spin (misalnya atas kekisi) yang bersalingtindak sama 
sendiri (misalnya jiran terdekat) dan (mungkin ada) medan luar, 

   𝐻 = −𝐽∑ 𝑆𝛼<𝛼𝛽> 𝑆𝛽 −𝐵 ∑ 𝑆𝛼𝛼  

Tatarajah spin yang optimum terhadap tenaga dicari. Langkah cubaan dibuat: pilih tatarajah X’ yang 
berlainan 1 spin sahaja (dengan kebarangkalian seragam di antara spin berlainan). Terima atau tolak 

langkah ini menurut kebarangkalian daripada faktor Boltzmann. 

 
5.4.3 Rangkaian Neuronan 
 

Modelkan neuron sebagai unsur McCulloch-Pitts – iaitu unsur dedua berambang: Vi {0,1}, dengan 

Vi := 1 (menembak) jika masukan hi lebih besar daripada nilai ambang Ui , ataupun hi-Ui > 0, dan Vi 

:= 0 (dorman) jika sebaliknya. Masukan terhasil daripada jumlah keaktifan neuron lain, masing-

masing dikadarkan dengan kekuatan sinaps Tij, iaitu hi = j TijVj. Jadi, dengan suatu ukuran masa t 

dan dgn τ ‘masa refraktori’ neuron, dinamik neuron diberikan 

   Vi (t+τ) = (Sj TijVj(t) -Ui)   

di mana  ialah fungsi tangga Heaviside:  (x)=1 jika x>0 dan   (x)=0 jika x<0. 

 

Dalam rangkaian neuron, Tij dan Ui diberi, dan perlu diselesaikan dinamik neuron untuk semua N 
neuron (i, j = 1,...,N). Ini merupakan penyelesaian serentak N persamaan berganding. 
 



    
 
Dalam model Little-Hopfield, dengan kehendak sambungan bersimetri, Tij = Tji, dan tiada 
swasambungan, Tii = 0, boleh di tuliskan suatu fungsi Liapunov yang menurun secara ekanada 

terhadap dinamik neuron: 

   , 

iaitu, 

    
Semak 4 kemungkinan: 
  

Vi(t) j TijVj(t) -Ui Vi (t+τ) ΔE 

0 <0 0 0 (Vi tak berubah) 

0 >0 1 Negatif 

1 <0 0 Negatif 

1 >0 1 0 (Vi tak berubah) 

 

Lihat bahawa dinamik keseluruhan rangkaian neuronan boleh diperihalkan sebagai perbahan keadaan 
di mana E menurun. 
 

Lakaran ‘landskap tenaga’ yang menunjukkan dinamik ini adalah seperti berikut: 
 

    
 
Keadaan stabil sepadan dengan keadaan dengan E minimum. 
 

Sistem rangkaian neuron ini ada kesamaan dengan sistem spin seperti model Ising. Keadaan neuron 
sepadan dengan keadaan spin, dan fungsi Liapunov sepadan dengan tenaga tatarajah. Kekuatan 

sambungan sinaps setara dengan keupayaan tukarganti spin, sementara nilai ambang setara dengan 
keupayaan luar. 

 

Vi 

Vj 

Tij 

 +−=
i j

i

i

ijiij VUVVTE
2

1

i

j

ijij VUVTE 












−−= 

 E 

Vi 



 
Ada kegunaan rangkaian neuronan ini. Ia boleh bertindak sebagai ingatan bersekutu atau ingatan 
beralamatkan isi dengan preskripsi Cooper-Hopfield iaitu: 

Tij = r ξi
(r)ξj

(r) 

(dgn Ui = 0) di mana 
ξi

(r) = 2(Vi
(r)-1)  

dari imej terstor {...,Vi
(r),...}r. Masukan atau keadaan awal yang hampir menyerupai suatu imej terstor 

mengembalikan (memberikan keadaan akhir stabil) imej berkenaan. 
 

Ia juga boleh melakukan pengoptimuman kombinatorik. Masalah kombinatorik membabitkan pilihan 
terhad, dan pengoptimuman ialah pemilihan pilihan-pilihan ini yang meminimumkan suatu ‘fungsi 
kos’. Untuk menggunakan rangkaian neuronan untuk pengoptimuman kombinatorik, petakan pilihan 

kepada Vi, dan samakan fungsi kos kepada E. Dengan itu dapatkan Tij dan Ui. Cari penyelesaian 
(keadaan terbaik/optimum; fungsi kos terendah) dengan menjalankan rangkaian neuronan dengan 

nilai-nilai ini. Keadaan terakhir (stabil) mengandungi nilai-nilai Vi yang memberikan pilihan 
optimum. Ingatan bersekutu juga sebenarnya boleh dilihat sebagai pengoptimuman kombinatorik: 
pilihan storan yang paling hampir. 

 
Masalah dengan kaedah ini ialah rangkaian neuronan boleh terlekat dalam minimum E tempatan 

(bukan minimum sejagat yang dikehendaki). Ini boleh diselesaikan menggunakan sepuhlindap 
tersimulasi (beri ‘haba’), atau kaedah lain seperti penerowongan tersimulasi, dan sebagainya. 
 

Satu lagi senibina rangkaian neuronan yang boleh diselesaikan ialah rangkaian neuron berlapisan, di 
mana neuron dikumpulkan ke dalam lapisan-lapisan L = L0,..,Lmax dan sambungan hanya dari satu 

lapisan ke lapisan seterusnya, iaitu Tij ≠ 0 hanya jika i  L, j  L-1 (suap ke hadapan). Dalam kes ini, 

rangkaian neuron melakukan pemetaan dari satu keadaan (lapisan pertama (‘masukan’), {Vk; k  L0}) 

kepada satu keadaan lain (lapisan terakhir (‘keluaran’), {Vi; i  Lmaks}). Ada teorem yang menyatakan 

rangkaian neuronan dengan 3 lapisan cukup untuk mewakili apa-apa fungsi (diberi neuron yang 

cukup). Pemetaan yang dilakukan bergantung kepada nilai-nilai Tij. 
 

Pemetaan yang dikehendaki boleh diaturcarakan dengan menentukan nilai-nilai Tij yang 
memberikannya. Sebagai pilihan, rangkaian boleh pelajari pemetaan yang dikehendaki menerusi 
mislanya rambatan baik ralat. Pembelajaran ialah pengubahsuaian Tij supaya sesuatu pemetaan 

diwakilkan. 
 

Pembelajaran dari misalan ialah di mana diberi set misalan positif masukan-keluaran yang 
dikehendaki {({Vk},{Vi})(r)}, Tij diubahsuai untuk ‘menghafal’ set ini, dan juga memberikan keluaran 
yang betul untuk masukan yang baharu yang serupa. Kebetulan keluaran diukur oleh ralat, 

𝜀(𝑟) =∑(𝑉𝑖 −𝑉𝑖
(𝑟)
)
2

𝑖

 

iaitu bilangan bit keluaran yang berbeza daripada yang dikehendaki, di mana keluaran Vi terhasil 
daripada masukan Vk

(r). Peminuman ralat boleh dilakukan menerusi kaedah Newton-Ralphson 

ataupun turun cerun, seperti dalam rajah berikut. 



     
Ubah 

    
di mana η mewakili “kadar pembelajaran” dan j  Lmaks-1. Menggunakan hukum rantai, 

    
di mana kita guna persamaan neuron termodifikasi Vi = g(hi) dengan g selanjar supaya boleh 
dibezakan, dan hi = Sj Tij Vj iaitu Ui telah dianggap sifar. Jika g(x) dipilih sebagai 1/(1+exp(-αx))  (θ 
diperolehi bila α menghampiri infiniti), maka g'(x) = α g(x) (1 – g(x)). Rambat balik ralat ke lapisan 

sebelum ini (katakan 3 lapisan sahaja): 

    

dengan hj = k Tjk Vk
(r). 

 
 Rangkaian neuronan dievolusi menurut kaedah Metropolis. Di setiap langkah masa, pilih neuron, 

dan kemaskini keadaanya. Pembelajaran juga boleh dibuat menurut Metropolis: pilih pasangan 
masukan-keluaran dan ubahsuai Tij menurut rambatan balik ralat. 
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Tugasan 9 

 

1.  Guna masa komputer (misalnya time.time() dalam Python) – misalnya tiga digit terakhir 

mikrosaat dibahagi 1000 untuk menjana nombor rawak dalam selang [0,1]. Uji kerawakan dan 

kepincangan dengan memplot purata n nombor dalam jujukan lawan n. Uji korelasi dua nombor 

berturutan dengan memplot kordinat (x,y) daripada dua nombor sebegini dalam rajah dua 

dimensi.  

 

2. Ulang (1) tapi jana nombor rawak sebegini: mula dengan suatu integer 6 digit yang dipilih 

rambang. Ambil 3 digit terkecil dibahagi 1000 sebagai nombor rawak. Kuasaduakan 3 digit 

integer ini dan ulang. 

 

3. Guna kaedah penerimaan-penolakan untuk menjana nombor rawak bertaburan seperti berikut: 

                                

Guna pasangan nombor rawak seragam (random.random() dalam Python) dari selang [0,1] 

dan [0,2]; plot histogram bagi taburan ini (matplot.pyplot.hist() dalam Python). 

Daripada nisbah bilangan janaan diterima, kira nisbah luas segitiga berbanding empatsegi 1.0 × 

2.0, dan dengan itu, luas tigasegi. 

 

4. Dalam suatu alam 2 dimensi, suatu kumpulan zarah A pegun dalam medan magnet malar, mereput 

kepada B dan C 70% masa, dan kepada 2D 30% masa. Jisim C ialah dua kali ganda jisim B. 

Reputan jenis pertama berlaku dengan kebarangkalian berkadaran exp(-) di mana  adalah sudut 

antara C dan arah medan magnet. Reputan jenis kedua bersifat isotrop. Plotkan taburan 

momentum lawan sudut dari arah medan magnet, bagi zarah-zarah hasil reputan. (Katakan E2 = 

p2 + m2 dalam alam ini; E tenaga, p momentum, m jisim; gunakan keabadian tenaga dan keabadian 

momentum) 

 

[1. Jana nombor rawak untuk memilih jenis reputan mengikut kebarangkalian. 2.  Jana arah 
reputan menurut jenis reputan. 3. Kira momentum hasil reputan. 4. Masukkan ke dalam taburan.] 
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1.  Tulis aturcara untuk memodel perjalanan rawak dalam satu dimensi: pada setiap langkah masa, 
bergerak ke kiri atau ke kanan satu jarak tetap. Plot jarak dari titik asal lawan masa. Betulkah ia 
berbentuk √N? 

 
2. Di atas kekisi 100×100, letakkan aktifkan (letak=1)  nod, dengan kebarangkalian p.  

Cari kelompok nod-nod aktif:  
  Pilih satu nod yang belum berada dalam mana-mana kelompok 
  Beri nombor kepada kelompok ini; tandakan nod tadi dengan nombor kelompok 

  Untuk setiap nod aktif berjiranan yang belum bertanda: 
  Lakukan serupa 

Kira saiz purata kelompok-kelompok. 
Plot bilangan kelompok lawan p, dan saiz kelompok lawan p. 
Adakah perubahan fasa? 

 
3. Untuk suatu model cerucuk pasir sangat mudah dalam 1 dimensi: 

Ada 10 ruang. 
Pilih suatu ruang rawak. Jatuhkan satu biji pasir di situ. 
Jika ruang itu punyai 0 biji pasir, yang 1 itu ditambah, menjadi 1 

Jika ruang itu punyai 1 biji pasir, ia menjadi 2, dan runtuh, mengalihkan 1 biji pasirnya 
kepada setiap jiran 

Jiran-jiran pun mengikuti peraturan yang sama, dan seterusnya. 
Biji pasir di ruang 0 dan 11 menghilang. 

Simulasi model ini, dengan mengira runtuhan (bilangan biji pasir yang bergerak setiap kali) lawan 

berapa kali jatuhan pasir.  
 Plot. 

 
 
 

   
 

: 
  
  

-  
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1.  Ada unsur-unsur spin, Sij   {-1,+1} di atas satu kekisi 2 dimensi N×N diindeks i, j. Hamiltonan 

sistem ini ialah 𝐻 = −𝐽∑ 𝑆𝑖𝑗jiranterdekat 𝑆𝑖′𝑗′−𝐵∑ 𝑆𝑖𝑗𝑖,𝑗  di mana jiranterdekat bermakna  |i’-i|  1 

dan |j’-j|  1. Gunakan kaedah Metropolis untuk mengsimulasi evolusi sistem ini:  

- mula dengan keadaan spin rawak 

- ulang berterusan (t = 0,1,2,…):   
- ulang N×N kali: 

- pilih i, j rawak 

- kira exp(-Hij)  P, iaitu bagi H jika Sij diterbalikkan 

nilainya 

- terbalikkan Sij kalau P > 1, dan, jika tidak, 
terbalikkan dengan kebarangkalian P  

(jana nombor rawak seragam antara [0,1], 
terbalikkan Sij bila nombor ini kurang drp P)  

  

Untuk N = 10 dan untuk N = 100; untuk beberapa nilai J, B dan  yang munasabah:  

• Kira dan plot tenaga H pada setiap t. 

• Kira kemagnetan 𝑀 ≡
1

𝑁2
∑ 𝑆𝑖𝑗𝑖𝑗 . 

Komen tentang ada/tiada perubahan fasa. 
 

-  

2. Simulasikan rangkaian Little-Hopfield dengan N =  100 neuron:   

awalkan Tij dengan nombor rawak seragam dalam selang [-2.0,2.0] (andaikan Ui semua 

sifar), dengan memastikan Tij = Tji dan Tii = 0 

mula dengan Vi rawak 
untuk setiap langkah masa, kemaskini keadaan N neuron dipilih satu persatu 
secara rawak secara seragam, dikemaskini menurut hukum dinamik neuron 

 Untuk beberapa pilihan Tij dan Vi awal: 
Berikan Vi pada setiap masa. 

Plotkan nilai fungsi tenaga/Liapunov terhadap masa. 
 
 

3. Katakan kita atur 100 neuron ke dalam bentuk 10×10 untuk berikan imej:  

 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 … 

… 

71 

81 

91 



 

Utk imej (1) , (2)   dan (3)   seperti berikut: 
 

          

          

          

          

          

          

          

          
          

          

 

          

          

          

          

          

          

          

          

          

          
 

          

          

          

          

          

          

          

          

          

          

 
Kira nilai-nilai Tij menurut preskripsi Cooper-Hopfield. 

 
Kira dan plotkan imej-imej daripada keadaan neuron-neuron bila rangkaian neuron 
menggunakan Tij ini dijalankan, bagi beberapa imej awal.  

 
 

4. Simulasi satu rangkaian neuronan berlapisan suap ke hadapan dengan 100 neuron masukan, 10 

di lapisan ‘tersorok’ (tengah) dan 3 di lapisan keluaran. Neuron masukan dikaitkan dengan neuron 

dalam imej 10×10 seperti dalam (3.), dan 3 neuron keluaran setiapnya dilabel ‘q’, ‘w’ dan ‘o’. 



Lakukan pembelajaran menggunakan rambatan balik ralat utk mengaitkan masukan imej kepada 

hurufnya, dengan menjalankan beberapa ratus kali pusingan. 

Selepas itu, uji ‘hafalan’ sistem anda: adakan ia memberikan keluaran yang sepatutnya bagi 3 
imej yang dipelajari itu, dan uji ‘itlakan’nya – sambutannya kepada imej-imej yang tidak 

dipelajarinya.   
 
 

 


