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6.0 Kebarangkalian 

6.1 Taburan statistik 

6.2 Taabiran statistik 
6.3 Anggaran biparameter 

6.4 Anggaran berparameter 

 
• Tugasan 12  

 

 

 
 
 

 
 
 

 
 

 
 
 

 
 



6.0 Kebarangkalian 
 

6.0.0  Asas 
 

Suatu set peristiwa E   berada dalam ruang kebarangkalian . Maka kebarangkalian P(E) ialah 

kekerapan mendapat hasil E dalam cubaan yang banyak. Ini ialah definisi kebarangkalain 

berdasarkan kekerapan. Kebarngkalian P(A) = P(xA) di mana x adalah pembolehubah rawak. 

Pembolehubah rawak boleh samada bersifat diskret atau selanjar. 
 

Aksiom kebarangkalian meyatakan jumlah kebarangkalian 

   P(.) = 1, 

dan nilai kebarangkalian, 

    0  P(E)  1. 

Bagi set peristiwa-peristiwa Ai yang tak bercantum, kebarangkalian jumlah 

P(Ai) =  P(Ai).    

 
Dengan itu, kita perolehi teorem-teorem berikut, 

   P(A) = 1 – P(A*) 

di mana A* ialah pelengkap kepada A,  = A A*. Juga, 

   P() = 0 

Bagi A1, A2   dan A1  A2, maka  

P(A1)  P(A2). 

Bagi A1, A2   yang tak semestinya tercantum,  

P(A1 A2) = P(A1) + P(A2) - P(A1 A2) 

     

6.0.1  Fungsi taburan 
 

Suatu fungsi taburan kebarangkalian (“pdf”) ditulis f().  

 
Fungsi taburan melonggok atau fungsi taburan kumulatif adalah 
   𝐹(𝑥) = ∑ 𝑓(𝜔)𝜔≤𝑥  

bagi  diskret, atau 

   𝐹(𝑥) = ∫ 𝑓(𝜔)𝑑𝜔
𝑥

−∞
  

bagi  selanjar. 

   
Bagi suatu pembolehubah rawak x dengan taburan u(x), nilai jangkaan ialah fungsian terhadap 

fungsi itu, 

   𝐸[𝑢(𝑥)] = ∫ 𝑢(𝑥)𝑓(𝑥)𝑑𝑥
∞

−∞
  

bagi x selanjar. Fungsian ini mempunyai ciri-ciri berikut, 

   E[k] = k 
jika k pemalar. Kemudian, 
   E[kv] = k E[v] 

dan 
   E[k1v1 + k2v2] = k1E[v1] + k2E[v2] 



yang menyatakan E itu linear. Maka, 

   E[x] =  x f[x] dx =  x dF[x]. 

Perlu dihargai bahawa nilai jangkaan kadangkala tak wujud. 
 
Median ialah nilai pertengahan dalam suatu set data yang diatur. Ini bermakna, jika xM itu nilai 

median, 

   ∫ 𝑓(𝑥)𝑑𝑥
𝑥𝑀

0
= ∫ 𝑓(𝑥)𝑑𝑥

∞

𝑥𝑀
, 

ataupun, 
   F(xM) = ½. 

Mod pula ialah nilai yang paling berkemungkinan, iaitu x bila f(x) maksimum. 
   
Pengukuran cirian suatu taburan boleh dilakukan oleh nilai momennya. Momen ke-m bagi kuantiti  

x untuk f(x) ialah 

   𝐸(𝑥 𝑚) = ∫ 𝑓(𝑥)𝑑𝑥
 

Ω
   

untuk x selanjar atau 

   𝐸(𝑥 𝑚) = ∑ 𝑥 𝑚
𝑥 𝑓(𝑥)  

untuk x diskret. Perhatikan bahawa min adalah momen pertama 

    = E(x), 

yang merupakan ukuran kedudukan. 
 
Momen diukur terhadap suatu titik. Momen pusatan ialah momen terhadap min, 

   𝐸[(𝑥 − 𝜇)𝑚] = ∫ (𝑥 − 𝜇)𝑚∞ 

−∞
𝑓(𝑥)𝑑𝑥  

Lihat 

    E[x–] = 0. 

 
Varians, 

   2  V(x) = E[(x–)2] = … = E[x2] - E[x]2 

mengukur kelebaran taburan. Kepencongan pula diberikan oleh, 

   1 = E[(x-)3]/3. 

Ia ukuran tak seimbangnya sesuatu taburan itu. 

 

 
 
 

Kurtosis, 

   2 = {E[(x-)4]-3}/4, 

mengukur bagaimana sesuatu taburan itu ’tajam puncak’ (kurtosis positif) atau ‘berekor’ (kurtosis 
negatif) berbanding taburan Gaussan atau normal (kurtosis sifar). 

 
Kita boleh ada keadaan taburan kebarangkalian mempunyai lebih daripada satu pembolehubah. 



Dalam kes dua pembolehubah x1 dan x2 misalnya, kita tuliskan taburan itu sebagai f(x1, x2). 
 
Kalau x1 dan x2 bebas, maka dan jika boleh ditulis f(x1, x2) = g(x1)h(x2). Korelasi di antara 

pembolehubah boleh diukur oleh kovarians, 

    cov(x,y) = E[(x–x) (y–y)] = E(xy) - xy 

Perhatikan bahawa, jika x, y bebas, E(xy) = E(x)E(y) maka kovarians adalah 0. Pekali korelasi, ialah 

    𝜌𝑥,𝑦 =
cov(𝑥,𝑦) 

𝜎𝑥 𝜎𝑦
  

di mana sisihan piawai ialah punca kuasadua varians, 

    x = +√E[(x-x)2], 

dan lain-lainnya. Rajah di bawah menunjukkan taburan dua pembolehubah x, y, dengan pelbagai 

korelasi (garisan untuk pandauan mata):  
 

    
Namun, nilai korelasi 0 tidak semestinya bermakna tiada pergantungan di antara pembolehubah. 

Suatu contoh ditunjukkan di bawah: 
 

    
     

6.0.2  Hukum 
 
Hukum lemah Nombor Besar mengatakan, 

dalam had n → ∞, 

   
1

𝑛
∑ 𝑥𝑖𝑖 → 𝜇. 

Dalam had bilangan besar data, nilai purata menumpu kepada nilai min. 
 

Teorem Had Pusat pula mengatakan, 

lim
𝑛→∞

𝑃(𝑧𝑛 ≤ 𝑧) =
1

√2𝜋
∫ 𝑒−

1

2
𝑢2

𝑑𝑢
𝑧

−∞
≡ erf𝑧  

(Ada juga definisi fungsi ralat 

   erf 𝑧 ≡
2

√𝜋
∫ 𝑒−𝑢2

𝑑𝑢
𝑧

0
 

yang dipakai.) Taburan kumulatif taburan normal ialah 

𝑓(𝑧) =
1

√2𝜋
𝑒−

1

2
𝑧2

. 

Teorem ini menyatakan, purata (atau jumlah) pembolehubah rawak 



𝑦𝑛 =
1

𝑛
∑ 𝑥𝑖

𝑖

 

yang bebas dan teragih serupa akan mendekati taburan normal atau taburan Gauss apabila bilangan 

pembolehubah itu menjadi besar, walaupun ia asalnya tidak tertabur secara normal. Taburan purata 
sampel akan mendekati taburan normal walaupun taburan asal tidak normal. Ini memberikan asas 

yang kuat untuk menggunakan kaedah statistik berasaskan taburan normal (seperti ujian-t, selang 
keyakinan, dan sebagainya), kerana walaupun data asal tidak teragih secara normal, teorem ini 
mengatakan bahawa purata sampel besar akan teragih hampir normal. 

  

6.0.3  Kebarangkalian bersyarat 
 
Tulis kebarangkalian bagi E jika diberi A benar sebagai 

    P(E|A). 
Maka 
    P(A|A) = 1 

dan 

    P(A2|A1) = P(A1A2|A1). 

Oleh kerana 

    
𝑃(𝐴1∩𝐴2|𝐴1)

𝑃(𝐴1|𝐴1 )
=

𝑃(𝐴1 ∩𝐴2 )

𝑃(𝐴1)
 

maka 

    𝑃(𝐴2|𝐴1) =
𝑃(𝐴1 ∩𝐴2 )

𝑃(𝐴1)
  

 
Fungsi taburan taburan kebarangkalian bersyarat, ialah,  

    𝑓(𝑥2|𝑥1) =
𝑓(𝑥1 ,𝑥2 )

𝑓 (𝑥1)
 

 

Teorem Bayes menyatakan, bagi Bi saling esklusif, i Bi = 1, 

     P(A) = i P(A|Bi) P(Bi), 

jadi 

   𝑃(𝐵𝑖|𝐴) =
𝑃(𝐵𝑖 ∩𝐴)

𝑃(𝐴)
=

𝑃(𝐴|𝐵𝑖 )𝑃(𝐵𝑖 )

𝑃(𝐴)
=

𝑃(𝐴|𝐵𝑖 )𝑃(𝐵𝑖 )

∑ 𝑃(𝐴|𝐵𝑗 )𝑃(𝐵𝑗 )𝑗
 

posteriori. 
  

6.0.4  Penukaran pembolehubah 
 

Katakan pembolehubah rawak x tertabur dengan pdf f(x), dan y=u(x) merupakan transformasi 1-ke-1 
x ke atas y. Maka songsangan, 

    x = (y). 

Fungsi taburan kebarangkalian untuk y: 

    g(y) = P(y) = P(x(y)) = f[(y)]. 

Bagi kes multivariat, bagi transformasi (x1,x2) → (y1,y2), 

    y1 = u1(x1,x2) 
    y2 = u2(x1,x2) 

songsangan adalah, 

x1 = 1(y1,y2) 



    x2 = (y1,y2) 

Boleh ditulis 

   f(x1,x2) dx1dx2 = f(1(y1,y2), (y1,y2)) |J| dy1dy2 

di mana 

    𝐽 = |

𝑑𝜔1
𝑑𝑦1

⁄
𝑑𝜔1

𝑑𝑦2
⁄

𝑑𝜔2
𝑑𝑦1

⁄
𝑑𝜔2

𝑑𝑦2
⁄

|   

adalah Jacobian untuk transformasi berkenaan. 

  
  
  

 
 

 
 
 

 
 

  
   
  

 
 

 
 
 

 

 

 

 
 
 

 
 

 
 
 

 
 
 

 
 

 



6.1 Taburan statistik 
 

6.1.0  Taburan Seragam 
 

    
Bagi taburan seragam, 

   U(x) = 1/a  0  x  a 

E(x) = a/2 
V(x) = a2/12 

 

6.1.1  Taburan Bernoulli 
 
Ini diberikan oleh proses Bernoulli yang merupakan jujukan di antara 2 kesudahan: 

   k = 0 P(k) = q  ‘gagal’ 
   k = 1 P(k) = p = 1 – q  ‘berjaya’ 

Maka  
   E(xm) = E(x) = p 

V(x) = p – p2 = pq 

Bagi n cubaan bebas, untuk k kejayaan, 

   𝑃(𝑘, 𝑛) = (
𝑛
𝑘

) 𝑝𝑘𝑞𝑛−𝑘  

di mana pekali binomial 

   (
𝑛
𝑘

) =
𝑛!

𝑘!(𝑛−𝑘)!
. 

Inilah taburan Bernoulli. 
    

Taburan binomial B(k,n,p) = P(k,n) bila kebarangkalian kejayaan individu = p. Maka 

   E(k) = nE(B(1,1,p)) = np 

   k
2 = npq = np(1-p) 

 
Kemudian, taburan multinomial 

𝑀(𝑥𝑖 ,𝑝𝑖 ,𝑛) =
𝑛!

𝑥1 !𝑥2 !…𝑥𝑛!
𝑝1

𝑥1 … 𝑝𝑘
𝑥𝑘  

Satu contoh taburan multinomial ialah histogram: 

  n = bil. Peristiwa 

xi = isi bin ke-I;  pi = 1 

Untuk ini, 
    E(xi) = npi 

    V(xi) = i
2 = npi(1-pi)  



Sila perhatikan bahawa xi tak semua bebas kerana jumlahnya = n. 

 
6.1.2  Taburan Poisson 
 

Taburan ini bercirikan: 

• bilangan peristiwa dalam selang berlainan, adalah bebas 

• bilangan peristiwa berkadaran saiz selang dalam had saiz ini → 0 

• untuk kebarangkalian yang > 1 peristiwa/selang, ia → 0 bila saiz selang → 0 

• ini semua bebas kedudukan, iaitu 

   𝑃𝛼𝑡(𝑛) =
𝑒−𝛼𝑡 (𝛼𝑡)𝑛

𝑛!
  

di mana  = kadar. Jadi 

   E(n)   = … = t  

dan 

   V(n) = …=  

• hasiltambah dua pembolehubah Poisson juga Poisson 

 

6.1.3  Taburan Gaussan atau Normal 
 
Taburan ini diberikan, 

   𝑁(𝑥; 0,1) =
1

√2𝜋
𝑒−𝑥2 2⁄  

atau secara lebih am, 

   𝑁(𝑥; 𝜇, 𝜎) =
1

𝜎
𝑁 (

𝑥−𝜇

𝜎
; 0,1) 

Adalah 

   ∫ 𝑁(𝑥; 𝜇, 𝜎)𝑑𝑥
𝑧

−∞
= erf (

𝑧−𝜇

𝜎
) 

 
Momen pusat 

   E[(x-)n] = 0   

bagi n ganjil, dan 

   E[(x-)n] = (2k-1)!!2k  

untuk n = 2k. 
 

Dwivariat Normal diberikan: 

  𝑓(𝑥, y) =
1

2𝜋 𝜎𝑥 𝜎𝑦√1−𝜌2 exp {
−1

2(1−𝜌2)
[

(x−𝜇𝑥 )2

𝜎𝑥
2 −

2𝜌 (x−𝜇𝑥)(y−𝜇𝑦)

𝜎𝑥 𝜎𝑦
+

(y−𝜇𝑦)
2

𝜎𝑦
2

]}. 

bagi pembolehubah x, y. Gambarajah berikut menunjukkan beberapa kes untuk berlainan x, y. 

 



 
Matriks Kovarians bagi taburan dwivariat diberikan, 

   𝑉 = [
𝜎𝑥

2 𝜌𝜎𝑥 𝜎𝑦

𝜌𝜎𝑥 𝜎𝑦 𝜎𝑦
2 ]   

Jika V berpepenjuru, ia bermakna x, y adalah bebas. Boleh didefinisikan 

  𝐱 = (
𝑥1

𝑥2
)  𝛍 = (

𝜇1

𝜇2
) 

Bagi taburan dwivariat, boleh cari pertukaran pebolehubah (yang merupakan kombinasi linear 
pembolehubah yang lama) sehinggakan ia bebas atau tak berkorelasi. 
 

Multivariat Normal (kordinat x1, x2, …, xn) punyai matriks kovarian 
   𝑉 =

[

𝜎1
2 𝜌12 𝜎1𝜎2 ⋯

⋮ ⋱  

𝜌𝑛1 𝜎𝑛𝜎1 ⋯ 𝜎𝑛
2

] 

 

6.1.4  Taburan 2
 

 

Jika x1, x2,…, xn  merupakan pembolehubah rawak normal bebas (n = darjah kebebasan) maka 

   f(x, , ) = N(x1;1,1) N(x2;2,2)… N(xn;n,n) 

dan didefinisikan 

   𝜒2 = ∑ (
𝑥𝑖 −𝜇𝑖

𝜎𝑖
)

2
𝑛
𝑖=1 . 

Taburan 2 ini digelar taburan 2. Minnya, 



   2(n) = n, 

sementara variansnya, 

   𝜎𝜒2(𝑛)
2 = 2𝑛. 

 

6.1.5  Taburan Cauchi 
 
Taburan ini diberikan, 

   𝐶(𝑥; 𝜇, 𝛼) =
1

𝜋𝛼

1

1+
(𝑥−𝜇)2

𝛼2

 

Variansnya  dan ia tak taat hukum nombor besar. 

  

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 



6.2 Taabiran Statistik 
 

6.2.0  Asas 
 
Taabiran statistik ialah proses seperti berikut: 

  Populasi → (penyampelan) → data → (statistik) → taabiran tentang populasi 

Kesimpulan statistik tentang populasi dibuat daripada data yang disampel daripada populasi. 

 
Jenis utama kesimpulan statistik adalah: 

• Anggaran 

Menganggar nilai atau julat nilai sesuatu ciri populasi berdasarkan yang berkenaan bagi 

suatu sampel 
• Ujian hipotesis 

Menilai sesuatu idea berkenaan sesuatu populasi menggunakan suatu sampel 

 
6.2.1  Anggaran 
 

Nilai yang paling mungkin bagi sesuatu parameter populasi dipanggil anggaran titik. Dalam 
menganggarkan nilainya, selalu ada ketidakpastian..Ketidakpastian sering dinyatakan dalam bentuk  

selang keyakinan yang ditakrifkan oleh nilai terendah dan tertinggi yang mungkin untuk parameter 
berkenaan. Contoh, "Purata bilangan basikal yang dimiliki oleh orang Besut adalah antara 3.5 dan 
6." 

 

6.2.2  Ujian hipotesis 
 
Sesuatu hipotesis dibuat tentang populasi. Contoh, "Purata bilangan basikal yang dimiliki oleh 

orang Besut adalah 4.8." Ujian hipotesis ialah untuk menilaikan kebarangkalian bahawa hipotesis 
adalah benar, berdasarkan data sampel. 

 
Ada pelbagai jenis ujian hipotesis. Langkah-langkah ujian bergantung kepada jenis data (samada ia 
berbentuk kategori atau berangka), dan domainnya (samada satu kumpulan, atau bandingan dua 

kumpulan, atau kumpulan sama, sebelum-selepas). Lagi contoh hipotesis atau soalan yang diuji: 
 70% rakyat Malaysia kidal. 

             Adakah berat purata kucing kurang daripada 5 kg? 
 Adakah pendapatan doktor lebih daripada pendapatan peguam? 

 

6.2.3  Statistik 
 
Disebut ‘statistik’ ialah apa-apa fungsi cerapan yang tidak bergantung kepada parameter populasi 

yang tidak diketahui. 

 



6.2.4  Penganggar 
 

Penganggar adalah apa-apa statistik yang digunakan untuk meneka nilai suatu kuantiti, katakan  

𝜃 adalah anggaran titik untuk . 

 

Ciri-ciri baik untuk pengaggar adalah seperti berikut: 

• Tak pincang – sentiasa berikan nilai yang betul dalam eksperimen yang banyak 

• Varians minimum 

• Konsisten – dengan bertambah sampel, penganggar menumpu ke nilai yang betul 

• Mencukupi – menyimpan semua maklumat berkenaan  yang ada dalam sampel 

• Teguh – tak sensitif kepada perubahan dalam model andaian 

• Kehilangan maklumat minimum 
• Kos pengiraan minimum 

 
Penganggar bagi kedudukan dalam taburan, misalnya jisim zarah dalam taburan ukuran jisim 

bersama ralat, mashayat zarah dalam taburan reputan. antaranya, adalah 
 𝜇̂ = 𝑥̅  min 
 𝜇̂ = median  (berguna dalam keadaan taburan dengan ekor panjang) 

 𝜇̂ =
1

2
[min(𝑥𝑖) + max(𝑥𝑖)] (berguna untuk taburan seragam tanpa ekor) 

 𝜇̂ = 𝑥̅ terpapas – ekor dicantas 

 

Penganggar tak terpincang ada punyai masalahnya: 
- Tak sentiasa mudah 
- Mungkin tak wujud 

- Mungkin ralat min kuasaduanya bukan yang terkecil 
- Ketakpincangan tak semestinya takvarian terhadap pertukaran pembolehubah 

 
Berikuat adalah beberapa cara membina penganggar. 

 
Dalam kaedah penggantian frekuensi, digantikan frekuensi populasi yang tak diketahui dengan 
frekuensi sampel. Sebagai contoh, dikehendaki g(p) untuk taburan binomial 𝐵(𝑥,𝑛, 𝑝) =

(
𝑛
𝑝) 𝑝𝑥 (1 − 𝑝)𝑛−𝑥. Gantikan p dengan x/n kerana E(x) = np. Kelebihannya ialah ia mudah sambil 

konsisten. Kekurangannya ialah ia mungkin pincang, dan mungkin variansnya bukan terkecil. 

 

Begini ialah cara pengurangan pincang bagi penganggar. Katakan 𝜃 adalah penganggar takpincang 

untuk . Kita mahu anggarkan g(). Cuba 𝑔̂ = 𝑔(𝜃), yg mungkin ada sedikit pincang. Kembangkan 

sebagai siri Taylor,  

𝑔(𝜃) = 𝑔(𝜃) + (𝜃 − 𝜃)𝑔′(𝜃̂) +
1

2
(𝜃 − 𝜃)

2
𝑔′′(𝜃̂) + ⋯.  

Maka 

   𝐸[𝑔(𝜃)] ≅ 𝑔(𝜃) +
1

2
𝑉(𝜃)𝑔′′(𝜃̂). 

Bagi V kecil, maka, 

𝑔̂1(𝜃) = 𝑔̂ −
1

2
𝑣(𝜃)𝑔′′(𝜃̂). 

 

Untuk menganggarkan suatu fungsi kepada q() menggunakan kaedah momen, ungkapkan q() 



sebagai fungsi kepada momen-momen populasi, 

mj  E(xj),  

dan kemudian gantikan momen populasi dengan momen-momen sampel. Yakni,  

   q() = g(m1, m2, …, mn) 

dengan m1 = min, m2 = E(x2) = v(x) + m1
2, dan seterusnya. Contoh, anggarkan 

2  m2 – m1
2.   

Cuba   

   𝜎 2 = 𝑚̂ 2 − 𝑚̂1
2 =

1

𝑛
∑𝑥𝑖

2 − 𝑥̅ 2 =
1

𝑛
∑(𝑥𝑖 − 𝑥̅)2 

Kaedah momen ini tidak begitu teguh kerana momen-momen tinggi banyak bergantung kepada ekor-
ekor dalam taburan. 

 
 

   
 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 



6.3 Anggaran Biparameter 
 

6.3.0  Asas 
 
Kaedah-kaedah biparameter atau tanpa parameter membuat andaian minimum terhadap taburan 

populasi. Oleh kerana tiada taburan tertentu diandaikan bagi kebarangkalian data-data, kaedah-
kaedah ini bolehlentur dan tegap dalam menangani data nyata. Ia tidak bergantung kepada 
kenormalan taburan atau kehomogenan varians. Kaedah biparameter adalah dipacu data, ia terfokus 

kepada data dan tidak bergantung kepada parameter-parameternya seumpama min dan varians. Data 
kecil, data tak seimbang, dan data dengan unsuran luar, boleh ditangani. 

 
Anggaran biparameter mencuba menganggarkan taburan  kebarangkalian dasar bagi suatu set nilai -
nilai rawak. Kita lihat tiga kaedah lazim, penghistograman, kaedah jiran terdekat, dan kebolehjadian 

maksimum. 

 

6.3.1  Penghistograman 
 
Domain set nombor-nombor rawak dibahagikan kepada selang-selang (disebut bin-bin). Biasanya 
saiz selang ini sama, namun ia juga boleh berbeza-beza. Bilangan nombor rawak yang jatuh ke dalam 

setiap selang dihitung, dan bilangan ini, dibahagi saiz selang, apabila ternormal, menganggarkan 
ketumpatan kebarangkalian taburan dasar, pada kedudukan di pertengahan selang. Suatu contoh 

mudah dilakarkan di bawah, dengan titik-titik hitam sebagai data nombor-nombor rawak, dan titik-
titik merah sebagai titik-titik dalam keluk anggaran. Taburan secara selanjar dianggarkan oleh bentuk 
histogram. 

 
Jika dalam bin ke-i, yang bersaiz si dan berpusat di xi, ada ni bilangan masukan data, taburan 
kebarangkalian dianggarkan 

    f(xi)  ni/si. 

Pernormalan menghendaki  f(xi) dx =  f(xi) si = 1. Jadi, 

    . 
Penganggaran lebih baik diperolehi apabila sampel lebih besar, atau data lebih banyak. 

 
Walau apapun taburan kebarangkalian keseluruhan yang mendasar data, bilangan titik data dalam 
sesuatu bin itu punyai kerawakan dijangka seperti hingar tembakan (lihat bahagian 17.0) yang 

diperihalkan taburan Poisson. Min ukuran di bin i ialah ni, maka oleh itu variansnya juga ni. Jadi, 

ralat statistik bagi ukuran ni ialah ni. Nisbah ralat lebih kecil bila lebih banyak titik data.  



 

6.3.2  Kaedah jiran terdekat 
 
Kalau penghistograman menganggar ketumpatan menerusi hitungan titik dalam suatu selang, kaedah 

jiran terdekat membuatnya daripada jarak di antara titik data. Songsangan jarak ini memberikan 
ketumpatan. Ini jelas bagi taburan dalam 1 dimensi. Konsep ini boleh diitlakkan ke dimensi lebih 

tinggi dengan mudah. 
 
Kaedah ini memberikan taburan yang licin jika titik-titik data tertabur secara seragam.Bagi nombok-

nombor rawak, ini tidak benar. Untuk melicinkan lekuk anggaran, boleh digunakan jarak ke jiran 
terdekat ke-k dang bukan yang pertama. Begini, naik-turun nilai jarak dipuratakan untuk beberapa 

bilangan jiran.  
 
Di bawah ini ditunjukkan suatu contoh anggaran jiran terdekat 1 dimensi bagi sampel titik-titik data 

(htiam), dan songsangan jarak di antara jiran terdekat (merah), diplot di kedudukan tengah-tengah di 
antara dua jiran berkenaan. 

 
Nilai y fungsi anggaran kemudian perlu dinormalkan untuk memberikan jumlah kebarangkalian 

sifar. 

 

6.3.3  Anggaran taburan kernel 
 
Kaedah ini ialah itlakan kepada kaedah pengihstograman, Anggaran fungsi kebarangkalian ditulis 
sebagai hasiltambah kernel, 

𝑓(𝑥0) =
1

𝑁ℎ
∑ 𝐾 (

𝑋𝑖 − 𝑥0

ℎ
)

𝑖

 

di mana N ialah jumlah bilangan titik data dalam sampel. Fungsi kernel K mengukur dekatnya titik 
data rawak Xi kepada titik kedudukan x0, terhadap selang h, dan diberi pemberat sewajarnya.  Ada 
beberapa jenis kernel dicadangkan. 

 

Kernel seragam memberikan pemberat sama ½ kepada setiap Xi  [x0 – h, x0 + h], 

𝐾 (
𝑋𝑖 −𝑥0

ℎ
) = {

1

2
   𝑖𝑓 |

𝑋𝑖−𝑥0

ℎ
| ≤ 1

0   𝑖𝑓 |
𝑋𝑖 −𝑥0

ℎ
| > 1

  

seperti di bawah,  



     
Kernel tigasegi pula memberikan pemberat positif bagi Xi  [x0 – h, x0 + h], dengan nilai lebih tinggi 

jika Xi lebih dekat kepada x0,     

    𝐾 (
𝑋𝑖 −𝑥0

ℎ
) = {

(1 − |
𝑋𝑖 −𝑥0

ℎ
|)   𝑖𝑓 |

𝑋𝑖 −𝑥0

ℎ
| ≤ 1

0                              𝑖𝑓 |
𝑋𝑖 −𝑥0

ℎ
| > 1

 

seperti di bawah, 

     
Kernel Epanechnikov seperti kernel tigasegi, tetapi bentuk tigasegi diganti dengan bentuk 

melengkung, 

    𝐾 (
𝑋𝑖 −𝑥0

ℎ
) = {

3

4
(1 − (

𝑋𝑖 −𝑥0

ℎ
)

2
)   𝑖𝑓 |

𝑋𝑖 −𝑥0

ℎ
| ≤ 1

0                              𝑖𝑓 |
𝑋𝑖 −𝑥0

ℎ
| > 1

 

seperti di bawah, 

     
Kernel normal seterusnya adalah kernel yang menggunakan bentuk fungsi normal, 

    𝐾 (
𝑋𝑖 −𝑥0

ℎ
) =

1

√2𝜋
𝑒

−
1

2
|

𝑋𝑖−𝑥0

ℎ
|

2

 

seperti di bawah, 

    . 
 

Contoh di bawah ini ialah titik di atas lengkung anggaran (merah) bagi kernel tigasegi ke atas titik-
titik rawak sampel (hitam). 

 



    
 
Perhatikan bahawa penghistograman dan jiran terdekat merupakan kaedah taburan kernel dengan 
kernel berkenaan masing-masing. 

 
Boleh ditunjukkan, pincang 

  𝑏 (𝑓(𝑥0)) ≡ 𝐸 (𝑓(𝑥0)) − 𝑓(𝑥0) =
ℎ2

2
𝑓′′(𝑥0)∫ 𝑧2𝐾(𝑧)𝑑𝑧 + 𝑂(ℎ4) 

di mana z = (x-x0)/h, dan varians 

  𝑉 (𝑓(𝑥0)) =
1

𝑁ℎ
𝑓(𝑥0)∫ 𝐾(𝑧)2𝑑𝑧 + 𝑂(

1

𝑁ℎ
). 

Perhatikan tolak-ansur varians-pincang terhadap h – bila h kecil (model lebih bolehlentur dan kurang 
licin) mengurangkan pincang tetapi meningkatkan varians, dan sebaliknya bila h besar. 

 
Ralat kuasadua min, 

   𝑀𝑆𝐸 (𝑓(𝑥0)) ≡ 𝑉 (𝑓(𝑥0)) + 𝑏 (𝑓(𝑥0))
2

. 

Kernel Epanechnikov meminimumkan MSE. 
 

Semak kekonsistenan kaedah taburan kernel. Bila N → , h → 0 dan Nh → , 

   𝑏 (𝑓(𝑥0)) → 0 

   𝑉 (𝑓(𝑥0)) → 0 

   𝑓(𝑥0) → 𝑓(𝑥0). 
 
 

 
 

 
 
 

 
 
 

 
 

 



6.4 Anggaran Berparameter 
 

6.4.0  Asas 
 
Kaedah anggaran berparameter ialah proses mengira nilai parameter sesuatu model dari data ukuran. 

Data sampel dignakan untuk menganggarkan parameter sesuatu taburan. 
 
Ini bermakna perihalan analisan taburan telah dikenalpasti, dan hanya nilai parameter-parameternya 

harus ditentukan supaya lengkung perihalan yang ditala menyetujui sampel data yang diberi/diukur. 
 

Data x diberikan taburan f(x,) dengan set parameter  = (1, …, k). 

x = (x1, …’ xn) adalah sampel. 

 

6.4.1  Kebolehjadian maksimum 
 

Fungsi taburan kebarangkalian gabungan ialah g(x,) Jika xi bebas, kebarangkalian boleh 

dihasildarabkan, jadi fungsi taburan kebarangkalian gabungan ialah i f(xi,). Diberi sampel data x, 

fungsi kebolehjadian terhadap  ialah 

    L () = i f(xi,). 

Prinsip kebolehjadian maksimum ialah bahawa anggaran terbaik bagi satu set data ialah yang 

diberikan oleh nilai-nilai  yang memaksimumkan fungsi kebolehjadian. Maksimum L  sepadan 

dengan maksimum ln L  l . Ini berlaku bila 

    
𝜕ℒ

𝜕𝛉
=

1

ℒ

𝜕ℒ

𝜕𝛉
= 0 

Kita gunakan l  kerana dengannya, kita gunakan hasiltambah mengganti hasildarab, dan kuasa 

eksponen dihapuskan. 

    l  = ln [ i f(xi,) ] 

       = i ln f(xi,) 
 

Bagi kes f berbentuk Gaussan, 

    𝑙 = ∑ {−
1

2
ln 2𝜋 − ln 𝜎𝑖 −

(𝑥𝑖−𝜇𝑖)2

2𝜎𝑖
2 }. 

Parameter bagi taburan yang dipertimbangkan adalah i dan i. Sebutan pertama berbentuk pemalar 

dan tidak memberi kesan dalam proses pemaksimuman. Kita dapati, 

    
𝜕𝑙

𝜕𝜇𝑖
=

2

2

(𝑥𝑖−𝜇𝑖 )

𝜎𝑖
2 = 0 

dan 

    
𝜕𝑙

𝜕𝜎𝑖
= −

1

𝜎𝑖
+

2

2

(𝑥𝑖−𝜇𝑖 )2

𝜎𝑖
2 = 0. 

Jika i =  untuk semua i dan i semua diketahui, maka 

    
𝜕𝑙

𝜕𝜇
= ∑

(𝑥𝑖 −𝜇𝑖)

𝜎𝑖
2 = ∑

𝑥𝑖

𝜎𝑖
2 − ∑

𝜇

𝜎𝑖
2 = 0 

jika  
    𝜇 = 𝜇̂.  

Dengan itu, 



    𝜇̂ =
∑

𝑥𝑖
𝜎𝑖

2⁄

∑1
𝜎𝑖

2⁄
.  

Purata wajar, iaitu purata dengan pemberat, dibuat. Nilai jangkaan bagi anggaran min, 

    𝐸(𝜇̂) =
∑

𝐸(𝑥𝑖)

𝜎𝑖
2⁄

∑1
𝜎𝑖

2⁄
=

∑
𝜇

𝜎𝑖
2⁄

∑1
𝜎𝑖

2⁄
= 𝜇, yang tidak terpincang. Ukuran dengan i 

terkecil adalah yang paling penting, yang berikan sumbangan terbesar kepada purata wajar, seperti 

dalam rajah di bawah.  

     
Varians dalam anggaran bagi min, 

    𝑉(𝜇̂) = 𝐸(𝜇̂2 ) = 𝜇2 = (
1

∑1
𝜎𝑖

2⁄
)

2

𝐸 [(∑ 𝑥𝑖
𝜎𝑖

2⁄ )
2
].  

Jika xi bebas, E(xixj) = E(xi).E(xj) = . Juga, gunakan ungkapan bagi momen kedua, E[x-)2] = E(x2) 

– [E(x)]2 ataupun E(x2) = V(x) + [E(x)]2, yakni, E(xi
2) = i

2 + 2, kita perolehi, 

    𝑉(𝜇̂) = (
1

∑1
𝜎𝑖

2⁄
) [ 1

∑𝜎𝑖
2 + 𝜇2∑

1

𝜎𝑖
4 + 𝜇2 ∑ 1

𝜎𝑖
2𝜎𝑗

2𝑖≠𝑗 ]. 

Ini memberikan  

𝑉(𝜇̂) = (
1

∑1
𝜎𝑖

2⁄
) + 𝜇2 [

∑1
𝜎𝑖

4⁄ +∑
1

𝜎𝑖
2𝜎𝑗

2𝑖≠𝑗 −(∑1
𝜎𝑖

2⁄ )
2

(∑1
𝜎𝑖

2⁄ )
2 ] =

1

∑1
𝜎𝑖

2⁄
. 

Penganggar ini sebenarnya cekap. 

 

Kalau penukaran pembolehubah dibuat,daripada  kepada g(),  

    𝑔̂ = 𝑔(𝜃),  

kerana daripada 

    
𝜕ℒ

𝜕𝑔
=

𝜕ℒ

𝜕𝜃

𝜕𝜃

𝜕𝑔
, 

di maksimum 
𝜕ℒ

𝜕𝜃
= 0, didapati 

𝜕ℒ

𝜕𝑔
= 0 jika 

𝜕𝜃

𝜕𝑔
≠ 0. Dalam kes multivariat, suatu matriks transformasi 

perlu digunakan. 
 

Beberapa komen dibuat berkenaan kaedah kebolehjadian maksimum: 
 

• Jika saiz sampel besar, kebolehjadian maksimum memberikan anggaran yang bitara, 
takpincang, varians minimum 

 



• Jika anggaran cekap wujud, ia boleh ditemui oleh kebolehjadian maksimum 
 

• Kaedah kebolehjadian maksimum sesuai bila parameter-parameter taburan berbilangan 
terhad, tertutup, dan tidak berada di sempadan domain.  

 

• Anggaran kebolehjadian maksimum seringnya yang paling mudah dikira bagi kes-kes 
kompleks 

 

• Kaedah kebolehjadian maksimum adalah cukup. Terutama bagi sampel-sampel kecil, ia lebih 
baik daripada kaedah-kaedah yang bergantung kepada membin data 

 

• Kaedah kebolehjadian maksimum tidak semestinya tegap atau tahan lasak 
 

• Kaedah kebolehjadian maksimum tidak memberi jalan untuk menguji kebaikan padanan 
 

• Untuk menggunakan kaedah kebolehjadian maksimum, fungsi taburan kebarangkalian bagi 
ukuran mesti diketahui 

 

6.4.2  2 – ki kuasadua 

 

Katakan kita ada sampel xi yang tertabu secara normal atau Gaussan N(xi, , i). Kebolehjadian, 

    ℒ = ∏
1

√2𝜋 𝜎𝑖
𝑒

−
(𝑥𝑖−𝜇) 2

2𝜎𝑖
2⁄

𝑖 . 

Jika didefinisikan 

    𝑑𝑖 =
𝑥𝑖 −𝜇

𝜎𝑖
 

maka maksimum L  bermakna minimum di
2  2. 

 

Parameter  dianggarkan menerusi padanan kepada nilai-nilai yang memberikan 2 minimum. 

Katakan kita tahu fungsi taburan kebarangkalian diberi oleh f(xi,). Ukuran yi dibuat pada kedudukan 

xi, dengan ralat i. Maka  yang meminimukan 

   𝜒2 = ∑
(𝑦𝑖 −𝑓(𝑥𝑖,𝛉))

2

𝜎𝑖
2𝑖  

diambil sebagai anggaran kepada parameter-parameter berkenaan. Ia memberikan fungsi yang paling 

hampir dengan ukuran setelah diwajarkan ralat setiap ukuran. Suatu contoh ditunjukkan di bawah. 

 



Nilai 2 selepas padanan memberi ukuran kebaikan padanan. Taburan piawai 2 dirujuk untuk 

mendapatkan kebarangkalian padanan menurut kebarangkalian nilai 2 diperolehi. 

 
Kaedah ki kuasadua ini berguna untuk ukuran-ukuran dengan kebarangkalian normal dengan varians 

berbeza (heteroskedastisiti). Bagi ukuran daripada penghistograman, taburan Poisson boleh 
diandaikan, yang hampir serupa dengan taburan normal, dengan nilai varians sama dengan nilai 
ukuran. 

 

6.4.3 Kuasadua terendah 

 

Bagi ukuran-ukuran dengan ralat yang sama (homoskedastisiti), kita hanya perlu cari minimum 

hasiltambah kuasadua-kuasadua i [yi-f(xi,)]2, tanpa memerlukan nilai i.  Ini ialah kaedah kuasadua 

terendah. 
 
Kaedah ini biasa digunakan dalam regresi linear dan padanan polinomial. Regresi linear ialah 

padanan garis lurus kepada data. 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 



Tugasan 12 

 

1. Plot taburan Poisson, 𝑃𝜇(𝑛) =
𝑒−𝜇 𝜇𝑛

𝑛!
, dengan digit terakhir nombor matrik anda, + 2.5, digunakan 

sebagai nilai . Sebutkan nilai m ini. 

Cari nilai n terendah yang mana P(n) < 0.01. Namakan ini nmaks. 

Jana suatu set nilai-nilai 1000 integer rawak n yang diberikan oleh taburan Poisson ini, 
menggunakan kaedah Monte Carlo penerimaan-penolakan. Jana dalam selang [0, nmaks]. 
Gunakan penghistograman untuk menganggar taburan yang dijana (guna bilangan bin yang 

munasabah). 
Guna juga jarak jiran terdekat untuk penganggaran. (Bagi setiap nilai n yang munasabah, plotkan 

1/(jarak ke nilai terdekat dalam set).) 

Kira nilai min dan varians bagi set nilai-nilai ini. Apakah hubungannya dengan ? 

 
2. Ukuran-ukuran berikut didapati. 

 

7.117 4.689 1.718 8.062 3.117 3.994 3.821 1.981 3.730 2.817 

4.204 1.242 5.017 3.501 2.518 2.692 3.055 2.669 5.196 2.463 

0.252 4.779 3.545 3.712 2.908 3.553 1.485 2.301 2.937 5.789 

1.108 1.657 2.624 1.697 3.504 6.052 2.383 3.923 4.257 5.337 

5.264 3.910 2.783 2.727 1.427 5.250 4.315 3.023 3.556 2.964 

2.516 3.108 3.898 2.609 4.216 3.066 3.457 5.214 4.302 5.458 

4.628 3.519 3.736 4.986 1.444 5.675 4.146 1.790 3.111 2.544 

0.272 4.438 2.673 2.321 2.698 3.504 3.738 3.077 2.880 3.339 

2.602 1.980 3.247 3.165 3.721 2.616 3.535 2.519 2.950 3.648 

1.400 1.903 1.698 5.148 4.023 1.738 3.841 3.588 3.379 4.131 

3.776 1.953 1.293 2.184 2.840 1.431 1.009 1.621 3.868 3.209 

2.864 2.552 3.378 2.777 3.002 3.135 2.588 9.685 3.117 2.824 

0.497 3.002 2.559 3.490 3.574 5.457 5.040 2.946 3.417 3.302 

1.287 2.644 6.086 3.102 2.414 5.277 2.307 4.122 2.727 2.948 

3.160 1.937 3.634 5.564 2.865 3.424 5.521 3.102 3.130 2.755 

3.342 4.907 5.577 1.925 1.754 4.208 2.047 1.348 3.768 3.668 

3.142 2.911 1.624 3.897 2.918 6.032 3.750 7.921 2.717 1.127 

5.814 1.662 3.902 2.667 3.276 2.345 4.925 2.487 3.436 2.239 

2.509 3.437 2.476 5.606 0.993 4.471 2.212 3.100 3.737 2.474 

2.905 3.713 4.550 3.725 6.697 4.383 2.470 6.189 2.993 3.369 



 

Lakukan penghistograman untuk penganggaran tak berparameter kepada data ini.  
Plot nilai anggaran yi di tengah selang bin-bin histogram xi, dengan ralat statistik di setiap bin 

sebagai ralatnya i, dikira sebagai √𝑦𝑖 (dianggap statistik Poisson). Plot titik anggaran dengan 

palang ralat, atas plot baharu. 

Katakan kita jangkakan taburan ini diberikan secara teorinya oleh fungsi Breit-Wigner, 𝑓(𝑥) ∝
1

(𝑥−𝑥0)2+𝛾2
. 

Lakukan anggaran berparameter untuk memadankan nilai x0 dan , bagi kedudukan puncak dan separuh 

lebar di separuh maksimum (HWHM): minimumkan 𝜒2 ≡ ∑
(𝑦𝑖−𝑓(𝑥𝑖))2

𝜀𝑖
2𝑖  terhadap x0 dan . (Boleh guna 

scipy.optimize.minimize dalam Python.) 
Plot lengkung teori ini di atas plot data+ralat tadi. 
 

  

 


