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6.0 Kebarangkalian

6.0.0 Asas

Suatu set peristiwa E € (2 berada dalam ruang kebarangkalian (2. Maka kebarangkalian P(E) ialah
kekerapan mendapat hasil E dalam cubaan yang banyak. Ini ialah definisi kebarangkalain
berdasarkan kekerapan. Kebarngkalian P(A) = P(xeA) di mana x adalah pembolehubah rawak.
Pembolehubah rawak boleh samada bersifat diskret atau selanjar.

Aksiom kebarangkalian meyatakan jumlah kebarangkalian

P(2)=1,
dan nilai kebarangkalian,
0<P(E)<L

Bagi set peristiwa-peristiwa Ajyang tak bercantum, kebarangkalian jumlah
P(UAI) = X P(A)).

Dengan itu, kita perolehi teorem-teorem berikut,
P(A)=1-P(A*)

di mana A* ialah pelengkap kepada A, 22 =Au A*. Juga,
P(@) =0

Bagi A1, A2 < £2dan A1 < A2, maka
P(A1) < P(A2).

Bagi A1, A2 < £ yang tak semestinya tercantum,
P(A1u A2) = P(A1) + P(A2) - P(A1n A2)

6.0.1 Fungsi taburan

Suatu fungsi taburan kebarangkalian (“pdf”) ditulis f(®).

Fungsi taburan melonggok atau fungsi taburan kumulatif adalah
F(x) = Xpex f(@)

bagi w diskret, atau
F(x) = f_xoo fw)dw

bagi w selanjar.

Bagi suatu pembolehubah rawak x dengan taburan u(x), nilai jangkaan ialah fungsian terhadap
fungsi itu,
Elu(x)] = ffow u(x) f(x)dx
bagi x selanjar. Fungsian ini mempunyai ciri-ciri berikut,
E[K] =k
jika k pemalar. Kemudian,
E[kv] =k E[V]
dan
E[kivi + kav2] = kiE[v1] + koE[v2]



yang menyatakan E itu linear. Maka,
E[X] =/ x f[x] dx = [ x dF[x].
Perlu dihargai bahawa nilai jangkaan kadangkala tak wujud.

Median ialah nilai pertengahan dalam suatu set data yang diatur. Ini bermakna, jika xm itu nilai
median,
LY fGdx = [7 f(x)dx,
ataupun,
F(xv) = %.
Mod pula ialah nilai yang paling berkemungkinan, iaitu x bila f(x) maksimum.

Pengukuran cirian suatu taburan boleh dilakukan oleh nilai momennya. Momen ke-m bagi kuantiti
x untuk f(x) ialah

E(x™) = [, f()dx
untuk x selanjar atau

E(x™) =X, x™f(x)
untuk x diskret. Perhatikan bahawa min adalah momen pertama

u=EX),
yang merupakan ukuran kedudukan.

Momen diukur terhadap suatu titik. Momen pusatan ialah momen terhadap min,
E[(x— ™ = [~ (x =™ f(x)dx

Lihat
E[x—x] = 0.

Varians,
o =V(X) = E[(x-w)?] = ... = E[x?] - E[X]?
mengukur kelebaran taburan. Kepencongan pula diberikan oleh,
n = E[(x-)%) o
la ukuran tak seimbangnya sesuatu taburan itu.

& ¥ . - 4 VN
Min  Median Mod Min = Median =Mod Mod Median Min

Kepencongan negatif Kepencongan sifar Kepencongan positif

Kurtosis,
72 = {E[(x-1)"]-3}/ 0%,

mengukur bagaimana sesuatu taburan itu ’tajam puncak’ (kurtosis positif) atau ‘berekor’ (kurtosis
negatif) berbanding taburan Gaussan atau normal (kurtosis sifar).

Kita boleh ada keadaan taburan kebarangkalian mempunyai lebih daripada satu pembolehubah.



Dalam kes dua pembolehubah x1 dan x2 misalnya, kita tuliskan taburan itu sebagai f(x1, x2).

Kalau x1 dan x2 bebas, maka dan jika boleh ditulis f(x1, x2) = g(x1)h(x2). Korelasi di antara
pembolehubah boleh diukur oleh kovarians,

cov(x,y) = E[(x—z) (y—4)] = E(xy) - zscssy
Perhatikan bahawa, jika x, y bebas, E(xy) = E(X)E(y) maka kovarians adalah 0. Pekali korelasi, ialah
,Dx,y = Coc‘r;(z;,y)
di mana sisihan piawai ialah punca kuasadua varians,

ox = +VE[(x-1)2],
dan lain-lainnya. Rajah di bawah menunjukkan taburan dua pembolehubah X, y, dengan pelbagai
korelasi (garisan untuk pandauan mata):

korelasi sifar korelasi positif korelasi negatif
Namun, nilai korelasi 0 tidak semestinya bermakna tiada pergantungan di antara pembolehubah.
Suatu contoh ditunjukkan di bawabh:
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6.0.2 Hukum

Hukum lemah Nombor Besar mengatakan,
dalam had n — oo,

%Zi Xi = |
Dalam had bilangan besar data, nilai purata menumpu kepada nilai min.

Teorem Had Pusat pula mengatakan,
1

lim P(z, < 2) = %ffooe_?zdu = erfz
(Ada juga definisi fungsi ralat

erfz = \/Z—Efoze‘uz du
yang dipakai.) Taburan kumulatif taburan normal ialah

1 —lz2

f(Z) = ﬁe 2.

Teorem ini menyatakan, purata (atau jumlah) pembolehubah rawak



1
Yn = ;zxi

L
yang bebas dan teragih serupa akan mendekati taburan normal atau taburan Gauss apabila bilangan
pembolehubah itu menjadi besar, walaupun ia asalnya tidak tertabur secara normal. Taburan purata
sampel akan mendekati taburan normal walaupun taburan asal tidak normal. Ini memberikan asas
yang kuat untuk menggunakan kaedah statistik berasaskan taburan normal (seperti ujian-t, selang
keyakinan, dan sebagainya), kerana walaupun data asal tidak teragih secara normal, teorem ini
mengatakan bahawa purata sampel besar akan teragih hampir normal.

6.0.3 Kebarangkalian bersyarat

Tulis kebarangkalian bagi E jika diberi A benar sebagai

P(E|A).
Maka

P(AJA)=1
dan

P(A2|A1) = P(A1nA2|A1).
Oleh kerana

P(A10A2|A1) — P(AlnAZ)

P(Aq|41) P(A;)

maka

P(A;{NA
P(4,]4,) = Zre

Fungsi taburan taburan kebarangkalian bersyarat, ialah,

_ f(xq,%5)
flal) =555

Teorem Bayes menyatakan, bagi Bisaling esklusif, 2iBi= 1,
P(A) = i P(A|Bi) P(Bi),
jadi
P(BinA) _ P(A|IB)P(B;)) _ _P(AIB)P(B;)
P(4) P(4) Z;P(AIB;)P(B))

P(B;|A) =
posteriori.

6.0.4 Penukaran pembolehubah

Katakan pembolehubah rawak x tertabur dengan pdf f(x), dan y=u(x) merupakan transformasi 1-ke-1
x ke atas y. Maka songsangan,
X = a(y).
Fungsi taburan kebarangkalian untuk y:
a(y) = P(y) = P(x=a(y)) = fla(y)].
Bagi kes multivariat, bagi transformasi (x1,x2) — (y1,y2),
y1 = uz(X1,X2)
y2 = U2(X1,X2)
songsangan adalah,
X1 = @1(y1,y2)



X2 = w(y1,y2)
Boleh ditulis

f(x1,x2) dxadxz = f(w1(y1,y2), @(y1,y2)) || dyidy2

dw dw
1/dY1 l/dYZ

dw dw
z/dY1 Z/dYZ
adalah Jacobian untuk transformasi berkenaan.

di mana




6.1 Taburan statistik

6.1.0 Taburan Seragam

1/a

Bagi taburan seragam,
UK)=1/a 0<x<a
E(X) = a2
V(x) = a2/12

6.1.1 Taburan Bernoulli

Ini diberikan oleh proses Bernoulli yang merupakan jujukan di antara 2 kesudahan:
k=0 P(k)=q ‘gagal’
k=1 PK)=p=1-q ‘berjaya’
Maka
EX™) =EX =p
V() =p-p*=pq
Bagi n cubaan bebas, untuk k kejayaan,
Pl = (})) p*q" ™

di mana pekali binomial
(Tl) _ n!
k) kin-k)r

Inilah taburan Bernoulli.

Taburan binomial B(k,n,p) = P(k,n) bila kebarangkalian kejayaan individu = p. Maka
E(k) =nE(B(1,1,p)) = np
o = npq = np(1-p)

Kemudian, taburan multinomial
i
M(x;,ppn) = xl !x:!'__xn!%xl e DK
Satu contoh taburan multinomial ialah histogram:
n = bil. Peristiwa
xi = isi bin ke-I; Z pi=1
Untuk ini,

E(xi) = npi
V(xi) = oi® = npi(1-pi)



Sila perhatikan bahawa x; tak semua bebas kerana jumlahnya = n.

6.1.2 Taburan Poisson

Taburan ini bercirikan:

e bilangan peristiwa dalam selang berlainan, adalah bebas

e bilangan peristiwa berkadaran saiz selang dalam had saiz ini — 0

¢ untuk kebarangkalian yang > 1 peristiwa/selang, ia — 0 bila saiz selang — 0
e ini semua bebas kedudukan, iaitu

—at n
Pat(n) _e€ n(!at)
di mana « = kadar. Jadi
EMN=u=...= ot
dan
Vin)y=..=u

e hasiltambah dua pembolehubah Poisson juga Poisson

6.1.3 Taburan Gaussan atau Normal

Taburan ini diberikan,
. _ 1 %%/
N(x;0,1) = =
atau secara lebih am,
) — L1 ar(XzH.
N(x;u,0) = GN( - ,0,1)
Adalah
z : — erf(Z4
f_w N(x;pu, 0)dx = erf( - )

Momen pusat
E[(x-)"] =0

E[(x-2)"] = (2k-1)!1 o2

bagi n ganjil, dan
untuk n = 2k.

Dwivariat Normal diberikan:

_ 1 -1 | G=p)® 20 -p) (y-1y) (y—uy)z]}
f(x, y) - 271'O'x0'y r—zl_p eXp {2(1—1)2) [ 2 Uxay + CryZ '
bagi pembolehubah x, y. Gambarajah berikut menunjukkan beberapa kes untuk berlainan o, oy.

Ox



|

Matriks Kovarians bagi taburan dwivariat diberikan,

V- 0’ poyo,
po,o, 0,°
Jika V berpepenjuru, ia bermakna x, y adalah bebas. Boleh didefinisikan

(% (s
X= (xz) H= (#2)
Bagi taburan dwivariat, boleh cari pertukaran pebolehubah (yang merupakan kombinasi linear
pembolehubah yang lama) sehinggakan ia bebas atau tak berkorelasi.

Multivariat Normal (kordinat X1, X2, ..., Xn) punyai matriks kovarian
V=

2
0 P12010;

Pn10n01 o On

6.1.4 Taburan »°

Jika x1, X2,..., xn merupakan pembolehubah rawak normal bebas (n = darjah kebebasan) maka
f(x, p, ) = N(x1;20,61) N(X2;42,62)... N(Xn;£n,0n)
dan didefinisikan

a2
XZ — ?:1 (xlaiﬂz) )
Taburan »? ini digelar taburan #2. Minnya,



() =n,
sementara variansnya,
O—)(z(n)z = 27’1.

6.1.5 Taburan Cauchi

Taburan ini diberikan,
1 1

C(x; p, @) =;W
a’

Variansnya oo dan ia tak taat hukum nombor besar.




6.2 Taabiran Statistik

6.2.0 Asas

Taabiran statistik ialah proses seperti berikut:
Populasi — (penyampelan) — data — (statistik) — taabiran tentang populasi
Kesimpulan statistik tentang populasi dibuat daripada data yang disampel daripada populasi.

Jenis utama kesimpulan statistik adalah:
e Anggaran
Menganggar nilai atau julat nilai sesuatu ciri populasi berdasarkan yang berkenaan bagi
suatu sampel
e Ujian hipotesis
Menilai sesuatu idea berkenaan sesuatu populasi menggunakan suatu sampel

6.2.1 Anggaran

Nilai yang paling mungkin bagi sesuatu parameter populasi dipanggil anggaran titik. Dalam
menganggarkan nilainya, selalu ada ketidakpastian..Ketidakpastian sering dinyatakan dalam bentuk
selang keyakinan yang ditakrifkan oleh nilai terendah dan tertinggi yang mungkin untuk parameter
berkenaan. Contoh, "Purata bilangan basikal yang dimiliki oleh orang Besut adalah antara 3.5 dan
6"

6.2.2 Ujian hipotesis

Sesuatu hipotesis dibuat tentang populasi. Contoh, "Purata bilangan basikal yang dimiliki oleh
orang Besut adalah 4.8." Ujian hipotesis ialah untuk menilaikan kebarangkalian bahawa hipotesis
adalah benar, berdasarkan data sampel.

Ada pelbagai jenis ujian hipotesis. Langkah-langkah ujian bergantung kepada jenis data (samada ia
berbentuk kategori atau berangka), dan domainnya (samada satu kumpulan, atau bandingan dua
kumpulan, atau kumpulan sama, sebelum-selepas). Lagi contoh hipotesis atau soalan yang diuji:

70% rakyat Malaysia kidal.

Adakah berat purata kucing kurang daripada 5 kg?

Adakah pendapatan doktor lebih daripada pendapatan peguam?

6.2.3 Statistik

Disebut ‘statistik’ ialah apa-apa fungsi cerapan yang tidak bergantung kepada parameter populasi
yang tidak diketahui.



6.2.4 Penganggar

Penganggar adalah apa-apa statistik yang digunakan untuk meneka nilai suatu kuantiti, katakan &.
6 adalah anggaran titik untuk 6.

Ciri-ciri baik untuk pengaggar adalah seperti berikut:
e Tak pincang — sentiasa berikan nilai yang betul dalam eksperimen yang banyak
e Varians minimum
e Konsisten — dengan bertambah sampel, penganggar menumpu ke nilai yang betul
e Mencukupi — menyimpan semua maklumat berkenaan #yang ada dalam sampel
e Teguh — tak sensitif kepada perubahan dalam model andaian
e Kehilangan maklumat minimum
e Kos pengiraan minimum

Penganggar bagi kedudukan dalam taburan, misalnya jisim zarah dalam taburan ukuran jisim
bersama ralat, mashayat zarah dalam taburan reputan. antaranya, adalah
a=x min
f = median (berguna dalam keadaan taburan dengan ekor panjang)
Q %[min (x;) + max(x;)] (berguna untuk taburan seragam tanpa ekor)
Jui

= X terpapas — ekor dicantas

Penganggar tak terpincang ada punyai masalahnya:
Tak sentiasa mudah

- Mungkin tak wujud
- Mungkin ralat min kuasaduanya bukan yang terkecil
- Ketakpincangan tak semestinya takvarian terhadap pertukaran pembolehubah

Berikuat adalah beberapa cara membina penganggar.

Dalam kaedah penggantian frekuensi, digantikan frekuensi populasi yang tak diketahui dengan
frekuensi sampel. Sebagai contoh, dikehendaki g(p) untuk taburan binomial B(x,n,p) =

(;l)px(l —p)™*. Gantikan p dengan x/n kerana E(x) = np. Kelebihannya ialah ia mudah sambil
konsisten. Kekurangannya ialah ia mungkin pincang, dan mungkin variansnya bukan terkecil.

Begini ialah cara pengurangan pincang bagi penganggar. Katakan 8 adalah penganggar takpincang
untuk 6. Kita mahu anggarkan g(&). Cuba § = g(8), yg mungkin ada sedikit pincang. Kembangkan
sebagai siri Taylor,

9®) =g(8) +(0-6)g®@ +3(8-6)°g"® + ...
Maka

E[g(®)] =g(8) +;V(8)g"®.
Bagi V kecil, maka,

9.(0) = g —>v(8)g"®.

Untuk menganggarkan suatu fungsi kepada q(6#) menggunakan kaedah momen, ungkapkan q(6)



sebagai fungsi kepada momen-momen populasi,
mj = E(Xj),
dan kemudian gantikan momen populasi dengan momen-momen sampel. Yakni,
q(& =g(m1, mz, ..., Mn)
dengan m1 = min, m2 = E(x?) = v(X) + m12, dan seterusnya. Contoh, anggarkan
0% =mz —mi2.
Cuba
§2 =1, —m," = ~¥x;2 — %? = =% (x;— %)?
Kaedah momen ini tidak begitu teguh kerana momen-momen tinggi banyak bergantung kepadaekor-
ekor dalam taburan.



6.3 Anggaran Biparameter

6.3.0 Asas

Kaedah-kaedah biparameter atau tanpa parameter membuat andaian minimum terhadap taburan
populasi. Oleh kerana tiada taburan tertentu diandaikan bagi kebarangkalian data-data, kaedah-
kaedah ini bolehlentur dan tegap dalam menangani data nyata. la tidak bergantung kepada
kenormalan taburan atau kehomogenan varians. Kaedah biparameter adalah dipacu data, ia terfokus
kepada data dan tidak bergantung kepada parameter-parameternya seumpama min dan varians. Data
kecil, data tak seimbang, dan data dengan unsuran luar, boleh ditangani.

Anggaran biparameter mencuba menganggarkan taburan kebarangkalian dasar bagi suatu set nilai -
nilai rawak. Kita lihat tiga kaedah lazim, penghistograman, kaedah jiran terdekat, dan kebolehjadian
maksimum.

6.3.1 Penghistograman

Domain set nombor-nombor rawak dibahagikan kepada selang-selang (disebut bin-bin). Biasanya
saiz selang ini sama, namun ia juga boleh berbeza-beza. Bilangan nombor rawak yang jatuh ke dalam
setiap selang dihitung, dan bilangan ini, dibahagi saiz selang, apabila ternormal, menganggarkan
ketumpatan kebarangkalian taburan dasar, pada kedudukan di pertengahan selang. Suatu contoh
mudah dilakarkan di bawah, dengan titik-titik hitam sebagai data nombor-nombor rawak, dan titik-
titik merah sebagai titik-titik dalam keluk anggaran. Taburan secara selanjar dianggarkan oleh bentuk
histogram.

_e_

Ml

0-
Jika dalam bin ke-i, yang bersaiz si dan berpusat di x;, ada ni bilangan masukan data, taburan
kebarangkalian dianggarkan

f(xi) oc nifsi.
Pernormalan menghendaki | f(xi) dx = 3 f(xi) si = 1. Jadi,

Penganggaran lebih baik d'iperolehi apabila sampel lebih besar, atau data lebih banyak.

Walau apapun taburan kebarangkalian keseluruhan yang mendasar data, bilangan titik data dalam
sesuatu bin itu punyai kerawakan dijangka seperti hingar tembakan (lihat bahagian 17.0) yang
diperihalkan taburan Poisson. Min ukuran di bin i ialah ni, maka oleh itu variansnya juga ni. Jadi,
ralat statistik bagi ukuran ni ialah Vni. Nisbah ralat lebih kecil bila lebih banyak titik data.



6.3.2 Kaedah jiran terdekat

Kalau penghistograman menganggar ketumpatan menerusi hitungan titik dalam suatu selang, kaedah
jiran terdekat membuatnya daripada jarak di antara titik data. Songsangan jarak ini memberikan
ketumpatan. Ini jelas bagi taburan dalam 1 dimensi. Konsep ini boleh diitlakkan ke dimensi lebih
tinggi dengan mudah.

Kaedah ini memberikan taburan yang licin jika titik-titik data tertabur secara seragam.Bagi nombok-
nombor rawak, ini tidak benar. Untuk melicinkan lekuk anggaran, boleh digunakan jarak ke jiran
terdekat ke-k dang bukan yang pertama. Begini, naik-turun nilai jarak dipuratakan untuk beberapa
bilangan jiran.

Di bawabh ini ditunjukkan suatu contoh anggaran jiran terdekat 1 dimensi bagi sampel titik-titik data
(htiam), dan songsangan jarak di antara jiran terdekat (merah), diplot di kedudukan tengah-tengah di
antara dua jiran berkenaan.

ST 0T —T 0100 08— 6—0—§

Nilai y fungsi anggaran kemudian perlu dinormalkan untuk memberikan jumlah kebarangkalian
sifar.

6.3.3 Anggaran taburan kernel

Kaedah ini ialah itlakan kepada kaedah pengihstograman, Anggaran fungsi kebarangkalian ditulis

sebagai hasiltambah kernel,
fx) = 1 ZK(Xi—x(,)
Txo) =33 2 h

di mana N ialah jumlah bilangan titik data dlalam sampel. Fungsi kernel K mengukur dekatnya titik
data rawak Xi kepada titik kedudukan xo, terhadap selang h, dan diberi pemberat sewajarnya. Ada
beberapa jenis kernel dicadangkan.

Kernel seragam memberikan pemberat sama Y2 kepada setiap Xi € [Xo — h, Xo + h],

cex)- o VL

0 if i

>1

seperti di bawah,



K(z)=1{|z| < 1}/2

0.5
|

a

4 05 o0 05 1
Kernel tigasegi pula memberikan pemberat positif bagi Xi € [xo— h, Xo + h], dengan nilai lebih tinggi
jika Xi lebih dekat kepada xo,

K (5oz) = (1= o)) o P =1

h 0 if 1| > 1

seperti di bawah,
K(z)=(1-|z))1{|z| <1}

0.5

0
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Kernel Epanechnikov seperti kernel tigasegi, tetapi bentuk tigasegi diganti dengan bentuk

melengkung,
i %o z . i~Xo
K (5m) = %(1_(XT) ) if [

0 if |1

<1

>1

seperti di bawah,
K(z) = (3/4)(1 - 2%)1{|z| < 1}

0.5 ’ A “,
/ N

o s : N
4 05 0 0.5 1

Kernel normal seterusnya adalah kernel yang menggunakan bentuk fungsi normal,
i 2
Xi-x%\ _ 1 _l‘M|
K( h ) - \/Zn:e 2on
seperti di bawah,

K(z) = (2m) " W3—5/2

0.5

Contoh dibawah ini ialah titik di atas lengkung anggaran (merah) bagi kernel tigasegi ke atas titik-
titik rawak sampel (hitam).



Perhatikan bahawa penghistograman dan jiran terdekat merupakan kaedah taburan kernel dengan
kernel berkenaan masing-masing.

Boleh ditunjukkan, pincang
b(fx0)) = E (fxg)) = f (o) =2 7 (xg)f 22K (2)dz + O(h*)
di mana z = (x-xo)/h, dan varians
V(fx)) = o= f (x) [ K(2)2dz + 0(-).
Perhatikan tolak-ansur varians-pincang terhadap h —bila h kecil (model lebih bolehlentur dan kurang
licin) mengurangkan pincang tetapi meningkatkan varians, dan sebaliknya bila h besar.

Ralat kuasadua min,

MSE (f(xe)) =V (F(xe)) + b (fxy))

Kernel Epanechnikov meminimumkan MSE.

2

Semak kekonsistenan kaedah taburan kernel. Bila N — «, h — 0 dan Nh — oo,
b(fx))~0
/4 (f(xo)) -0
f(xo) - f(xo)-



6.4 Anggaran Berparameter

6.4.0 Asas

Kaedah anggaran berparameter ialah proses mengira nilai parameter sesuatu model dari data ukuran.
Data sampel dignakan untuk menganggarkan parameter sesuatu taburan.

Ini bermakna perihalan analisan taburan telah dikenalpasti, dan hanya nilai parameter-parameternya
harus ditentukan supaya lengkung perihalan yang ditala menyetujui sampel data yang diberi/diukur.

Data x diberikan taburan f(x,0) dengan set parameter 8 = (&, ..., &).
X = (X1, ...” Xn) adalah sampel.

6.4.1 Kebolehjadian maksimum

Fungsi taburan kebarangkalian gabungan ialah g(x,0). Jika x; bebas, kebarangkalian boleh
dihasildarabkan, jadi fungsi taburan kebarangkalian gabungan ialah [T f(xi,0). Diberi sampel data X,
fungsi kebolehjadian terhadap 0 ialah

() = ITi f(xi,0).
Prinsip kebolehjadian maksimum ialah bahawa anggaran terbaik bagi satu set data ialah yang
diberikan oleh nilai-nilai ® yang memaksimumkan fungsi kebolehjadian. Maksimum & sepadan
dengan maksimum Zv = Z. Ini berlaku bila
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Kita gunakan 2 kerana dengannya, kita gunakan hasiltambah mengganti hasildarab, dan kuasa
eksponen dihapuskan.

2=In[ITif(xi,0) ]

=2 In 1(xi,0)

Bagi kes f berbentuk Gaussan,
2
=3{-3m2r—Ing, -}
Parameter bagi taburan yang dipertimbangkan adalah ¢4 dan oi. Sebutan pertama berbentuk pemalar

dan tidak memberi kesan dalam proses pemaksimuman. Kita dapati,
ol 2 (x;—u;)
— =2

ong 2 o

dan
oL _ 1y 2Gmm)
Bai O'i 2 O'iz !

Jika zq = g untuk semua i dan o semua diketahui, maka
O _ G- _gx oy #
a#_z O.iz _Zaiz Zaiz_o
jika
©= Q.
Dengan itu,
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Purata wajar, iaitu purata dengan pemberat, dibuat. Nilai jangkaan bagi anggaran min,
VAP L _ .
E(4) = L= L = u, yang tidak terpincang. Ukuran dengan oi

o2 Y2
terkecil adalah yang paling penting, yang berikan sumbangan terbesar kepada purata wajar, seperti
dalam rajah di bawah.
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Varians dalam anggaran bagi min,

2
S A2\ 2 1 xi 2
v =50 = (51=) £,
Jika xi bebas, E(xiXj) = E(xi).E(xj) = zu. Juga, gunakan ungkapan bagi momen kedua, E[x-z)?] = E(x?)
— [E(X)]? ataupun E(x?) = V(X) + [E(X)]?, yakni, E(xi®) = ai® + 12, kita perolehi,

AN 1 1 2 L 2 1
V(ﬂ) = <21/0i2> [201‘2 +u 20i4 + U Ziij o202

Ini memberikan

1 L 1, )]
n 1 2 2 /Ui4+2i$jai2‘7j2_(z /Uiz) 1
v = (5i—) + : =
2 /Giz (Zl/a,z) 2 /Uiz

Penganggar ini sebenarnya cekap.

Kalau penukaran pembolehubah dibuat,daripada &kepada g(6),

g =4(9),
kerana daripada
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di maksimum Z—g =0, didapatig—z = 0jika Z—Z # 0. Dalam kes multivariat, suatu matriks transformasi
perlu digunakan.

Beberapa komen dibuat berkenaan kaedah kebolehjadian maksimum:

e Jika saiz sampel besar, kebolehjadian maksimum memberikan anggaran yang bitara,
takpincang, varians minimum



e Jika anggaran cekap wujud, ia boleh ditemui oleh kebolehjadian maksimum

e Kaedah kebolehjadian maksimum sesuai bila parameter-parameter taburan berbilangan
terhad, tertutup, dan tidak berada di sempadan domain.

e Anggaran kebolehjadian maksimum seringnya yang paling mudah dikira bagi kes-kes
kompleks

e Kaedah kebolehjadian maksimum adalah cukup. Terutama bagi sampel-sampel kecil, ia lebih
baik daripada kaedah-kaedah yang bergantung kepada membin data

e Kaedah kebolehjadian maksimum tidak semestinya tegap atau tahan lasak
e Kaedah kebolehjadian maksimum tidak memberi jalan untuk menguji kebaikan padanan

e Untuk menggunakan kaedah kebolehjadian maksimum, fungsi taburan kebarangkalian bagi
ukuran mesti diketahui

6.4.2 »*— ki kuasadua

Katakan kita ada sampel xj yang tertabu secara normal atau Gaussan N(xi, «, oi). Kebolehjadian,
(- ®
L=]],=-¢e 20;%

277.'0',:

Jika didefinisikan

o
d; =
4

maka maksimum & bermakna minimum >.di? = #°.

Parameter O dianggarkan menerusi padanan kepada nilai-nilai yang memberikan #? minimum.
Katakan kita tahu fungsi taburan kebarangkalian diberi oleh f(xi,0). Ukuran yi dibuat pada kedudukan
Xi, dengan ralat oi. Maka 6 yang meminimukan
i—f(x,0))”
=3 (v fa'z )
diambil sebagai anggaran kepada parameter-parameter berkenaan. la memberikan fungsi yang paling
hampir dengan ukuran setelah diwajarkan ralat setiap ukuran. Suatu contoh ditunjukkan di bawah.

3.5 + # Data dengan ralat

F i pad
10 umgsi padanan

it :
+ +++ it +++++++..+. +++++ +++++

0.0 7

1.0 4

o

T T T T T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0



Nilai z? selepas padanan memberi ukuran kebaikan padanan. Taburan piawai x? dirujuk untuk
mendapatkan kebarangkalian padanan menurut kebarangkalian nilai »? diperolehi.

Kaedah ki kuasadua ini berguna untuk ukuran-ukuran dengan kebarangkalian normal dengan varians
berbeza (heteroskedastisiti). Bagi ukuran daripada penghistograman, taburan Poisson boleh
diandaikan, yang hampir serupa dengan taburan normal, dengan nilai varians sama dengan nilai
ukuran.

6.4.3 Kuasadua terendah

Bagi ukuran-ukuran dengan ralat yang sama (homoskedastisiti), kita hanya perlu cari minimum
hasiltambah kuasadua-kuasadua i [yi-f(xi,0)]?, tanpa memerlukan nilai oi. Ini ialah kaedah kuasadua
terendah.

Kaedah ini biasa digunakan dalam regresi linear dan padanan polinomial. Regresi linear ialah
padanan garis lurus kepada data.
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1. Plot taburan Poisson, P, (n) = - , dengandigit terakhir nombor matrik anda, + 2.5, digunakan

sebagai nilai x Sebutkan nilai m ini.

Cari nilai n terendah yang mana P (n) < 0.01. Namakan ini Nmaks.

Jana suatu set nilai-nilai 1000 integer rawak n yang diberikan oleh taburan Poisson ini,
menggunakan kaedah Monte Carlo penerimaan-penolakan. Jana dalam selang [0, Nmaks].
Gunakan penghistograman untuk menganggar taburan yang dijana (guna bilangan bin yang
munasabah).

Gunajuga jarak jiran terdekat untuk penganggaran. (Bagi setiap nilai n yang munasabah, plotkan
1/(jarak ke nilai terdekat dalam set).)

Kira nilai min dan varians bagi set nilai-nilai ini. Apakah hubungannya dengan x?

2. Ukuran-ukuran berikut didapati.

7.117 4.689 1.718 8.062 3.117 3.994 3.821 1.981 3.730 2.817

4.204 1.242 5.017 3.501 2.518 2.692 3.055 2.669 5.196 2.463

0.252 4.779 3.545 3.712 2.908 3.553 1.485 2.301 2.937 5.789

1.108 1.657 2.624 1.697 3.504 6.052 2.383 3.923 4.257 5.337

5.264 3.910 2.783 2.727 1.427 5.250 4.315 3.023 3.556 2.964

2.516 3.108 3.898 2.609 4.216 3.066 3.457 5.214 4.302 5.458

4.628 3.519 3.736 4.986 1.444 5.675 4.146 1.790 3.111 2.544

0.272 4.438 2.673 2.321 2.698 3.504 3.738 3.077 2.880 3.339

2.602 1.980 3.247 3.165 3.721 2.616 3.535 2.519 2.950 3.648

1.400 1.903 1.698 5.148 4.023 1.738 3.841 3.588 3.379 4.131

3.776 1.953 1.293 2.184 2.840 1.431 1.009 1.621 3.868 3.209

2.864 2.552 3.378 2.777 3.002 3.135 2.588 9.685 3.117 2.824

0.497 3.002 2.559 3.490 3.574 5.457 5.040 2.946 3.417 3.302

1.287 2.644 6.086 3.102 2414 5.277 2.307 4.122 2.727 2.948

3.160 1.937 3.634 5.564 2.865 3.424 5.521 3.102 3.130 2.755

3.342 4.907 5.577 1.925 1.754 4.208 2.047 1.348 3.768 3.668

3.142 2911 1.624 3.897 2.918 6.032 3.750 7.921 2.717 1.127

5.814 1.662 3.902 2.667 3.276 2.345 4.925 2.487 3.436 2.239

2.509 3.437 2.476 5.606 0.993 4.471 2.212 3.100 3.737 2.474

2.905 3.713 4.550 3.725 6.697 4.383 2.470 6.189 2.993 3.369




Lakukan penghistograman untuk penganggaran tak berparameter kepada data ini.

Plot nilai anggaran yi di tengah selang bin-bin histogram xi, dengan ralat statistik di setiap bin
sebagai ralatnya &, dikira sebagai Vyi (dianggap statistik Poisson). Plot titik anggaran dengan
palang ralat, atas plot baharu.

Katakan kita jangkakan taburan inidiberikan secarateorinya oleh fungsiBreit-Wigner, f (x) « x) 2
—A0

Lakukan anggaran berparameter untuk memadankan nilai x, dan y, bagi kedudukan puncak dan separuh
2 _ Z_(J’i—f(xi))z
- l

&2

lebar di separuh maksimum (HWHM): minimumkan y terhadap x, dan 7. (Boleh guna

scipy.optimize.minimize dalam Python.)
Plot lengkung teoriini di atas plot data+ralat tadi.



