Sementaradaya nukleus kuat, daya nukleus lemah dan daya keelektromagnetan diperihal baik oleh
teori medan kuantum, graviti belum sebegitu. Bahkan graviti diterangkan dengan baiknya oleh teori
kerelatifan am. Teori medan kuantum terbit daripada gabungan teorikuantum dan kerelatifanam. la
bersifat kuantum. Daya terakibat daripada tukarganti zarah maya. Walhal, kerelatifan am ialah teori
berlandaskan geometri. Daya terakibat daripada kelengkungan ruangmasa.

Kerelatifan am memberi pemerihalan sangat baik untuk graviti. Namun adalah semulajadi untuk
mencuba mencari teori kuantum untuk graviti. Ini belum menemui kejayaan sebenar lagi.

11.1 Graviti Newton

Newton telah menyatukan graviti bumi dengan graviti langit. Pergerakan mengorbit tidak lebih
daripada pergerakan jatuhan. Hukum Newton untuk graviti di antara dua objek berjisim m, dan m,
berjarak r diantaranya, daya

mym;

F=06—3

r
dengan G sebagai pemalar graviti Newton. Jisim menentukan kekuatan salingtindak sesuatu objek

itu, semacam cas untuk graviti. Hukum ini terpakai untuk objek di bumi dan juga objek di langit.
Pergerakan objek-objek langit boleh difahami sebagai akibat graviti.

11.2 Prinsip kesetaraan

Menariknya, ‘jisim’ yang digunakan dalam persamaan graviti Newton dianggap sama dengan ‘jisim’
yang digunakan dalam persamaan dinamik Newton, F = ma. Jisim dalam hukum dinamik ialah
perkadaran pecutan sesuatu objek dikenakan suatu daya, sementara yang dalam hukum graviti ialah
kekuatan pengaruh graviti atas objek tersebut.

Kesetaraan jisi graviti dengan jisim inersia boleh diuji dalam eksperimen Newton, di mana bandul
sama panjang dengan bahan berlainan digunakan. Kala bandul-bandulini berkadaran dengan V(jisim
inersia/jisim graviti), dan tiada perbezaan dikesan. Eksperimen yang lebih jitu ialah eksperimen
Eotvos, yang mengukur kilasan akibat kesan kombinasi daya emparan akibat pergerakan bumidan
daya graviti dengan bumi dua objek berlainan bahan.
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Eksperimen Eotvos. Cermin mengukur kilasan bila F,/F, tak sama G,/G..



Keseteraan jisim graviti dengan jisim inersia disarankan oleh “prinsip kesetaraan’. Prinsip kesetaraan
bermakna pecutan gravitian itu sama untuk semua objek walau berlainan jisim, dan dengan itu
kumpulan objek-objek yang memecut pada kadar sama, adalah seperti merasai satu daya graviti
yang sama. Ini bermakna daya graviti boleh digantikan dengan bingkai rujukan yang memecut.

rehat
g’l\ medan graviti seragam ke bawah
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pecutan seragam ke atas

Kesetaraan bingkai dipecut dan bingkai dalam graviti.

Secara tepat, formulasi Prinsip Kesetaraan oleh Weiberg adalah seperti berikut:

Pada setiap titik ruang-masa, adalah mungkin untuk memilih suatu “sistem kordinat yang inersiaan
secara tempatan”yang mana, dalam rantauyang cukup kecil sekeliling titik tersebut, hukum-hukum
alam adalah dalam bentuk yang sama seperti dalam sistem kordinat Kartesan yang tak memecut,
tanpa graviti.

11.3 Kelengkungan ruang-masa

Bingkai yang memecut, bila dilihat pada pensekitaan masa, merupakan siri bingkai-bingkai dengan
halaju relatif berbeza. Menurut kerelatifan khusus, pada bingkai rujukan dengan halaju relatif v,
berlaku pengecutan ruang,

1
dx=——dx
y@w) °
dimana
1
y(w) = >

1-v%/,

dan pengembangan masa,

Pengecutan ruang dan pengembangan masa berbeza akibat pemecutan, di bingkai-bingkai
berjiranan, membawa kepada ruang-masa yang melengkung. Maka daya graviti, yang boleh dilihat
sebagai akibat bingkai memecut, boleh dilihat sebagai akibat kelengkungan ruang-masa.

Kelengkungan ruang-masa berkordinat x*, £=0,1,2,3 untuk dimensi 4, diperihalkan oleh metriknya
g, Unsur jarak ds® = g,,dx“dx", dengan penggunaan kelaziman hasiltambah indeks yang berulang,
yang bermakna ds? = 2,2, g,,dx“dx" = goodx°dXx° + go1dx%dx* + ... + g10dXx dx® + ... + g33dx3dx3. Untuk
ruang datar dimensi 3,



1 0 O
gij={0 1 0]
0 0 1

ij = 1,2,3, mewakili x, y, z, ini mengembalikan jarak seperti diberikan teorem Pythagoras, ds? =
(dx")*+(dx*)*+(dx*)*. Untuk ruang-masa dimensi 4 datar,

-1 0 0 O
(0 1 0 O
I9ew=l0 0 1 0
0 0 01
menurut suatu kelaziman, dan
1 0 0 0
(0 -1 0 0
Iw=l0 0 -1 o0
0 0 0o -1

menurut suatu kezaliman lain, yang tidak mengubah asas fizik, yang kini kita pilih, supaya konsisten
dengan apa yangkita gunakan sebelumini. Ini memberikan ds? = (dx")*- (dx')* (dx*)*-(dx*)*, dengan
x"sebagai masa t, iaitu unsur jarak dalam kerelalifan. Nilai metrik menentukan bagaimana teorem
Pythagoras tidak dipatuhi dan dengan itu bagaimana ruang-masa terlengkung.

11.4 Tensor

Tensor adalah generalisasi skalar (dimensi 0) dan vektor (dimensi 1). Untuk dimensi 2 dan lebih,
ruang mungkin melengkung, dan ini diparameterkan oleh metrik ruang berkenaan. Untuk
menentukan ungkapan yang betul bagi jarak, kita perlu namakan dua jenis vektor, vektor kovarian
dan vektor kontravarian. Hasildarab skalar di antara unsur dua jenis vektor ini yang menghasilkan
unsur jarak, dengan metrik tersirat dalam hubungan antaranya.

Secara formal, ds? = g,,dx"dx"= dx,dx"= dx*dx, yang menunjukkan protokol menurunkan indeks
menerusi g,,. Begitulah g** digunakan untuk menaikkan indeks g“"dx,= dx". x,dinamakan vektor
kovarian, sementara x“ vektor kontravarian. Vektor kovarian dan vektor kontravarian saling
melengkap, dihubungi oleh metrik. Perhatikan bahawa metrik g, perlu bersimetri dan perlu bukan
singular (boleh disongsangkan). g,,, merupakan fungsi kedudukan.

Perhatikan bahawa perubahan kordinat dalam ruang yang sama boleh memberikan metrik
berlainan. Misalnya, kordinat Kartesan dan kordinat sferaan, walau memerihalkan ruang datar yang
sama. Metrik bagi kordinat Kartesan dalam ruang datar 3 dimensi adalah seperti g; yang diberikan di
atas. Bagi kordinat sferaan,

ds? =dr? +r2d6? + r?sin? 0 dg?.
Walaupun metriknya berbeza dengan metrik kordinat Kartesan, ia mewakili ruang dengan geometri
yang sama, iaitu datar.

Metrik bergantung kepada sistem kordinat yang digunakan. Namun, oleh kerana ds? tak varian
terhadap perubahan kordinat, g,, haruslah suatu tensor.

. . - d
Suatu vektor kontravarian dalam kordinat x* dikaitkan dengan bezaan pyort
of
ﬁ —
f dxH



dan ini membentuk asas ruang (tangen) berkenaan:

9
= pH—
v=vh—0
Bila asas kordinat berubah, x#* — x'#, kerana
af _ dxV of

ax'*  9x'HoxY

maka
0 oxv 0

dx'H  dx'HaxV

memberikan asas baharu dalam sebutan asas lama. Bagi vektor v,

d
v=ph—=1 U
dxH dx'H

ataupun
ox'V o ,. 0
Ox* ox'v
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ox'H
Oleh kerana
oxP 9x'°
20 X
ax'?  oxV
fungsi Kronecker, dan sebagainya, maka

— SH
_50,

dx'v
vH =,
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Tensor merupakan vektor pangkat tinggi. Transformasi tensor pangkat 2 adalah seperti berikut,
menurut transformasi vektor tadi:

T'HY — ailu ox" = TPo
dxP 0x°
dan
T = EE =T
W ax'kax'v T Pe
dan
o 0x'Mox?

vV axPoxV Ts
Apabila tensor bercampur pangkat 2 dikecutkan, ia menjadi skalar:

rﬂ_ax,#axp V— SPv v — H
u_axvap—‘Sva_Tv_Tu

Perhatikan:
e jika suatu tensor punyai semua komponen 0 dalam suatu kerangka kordinat, makai a
semuanya 0 juga dalam sistem kordinat lain
e jika duatensorpunyaisemuakomponensamadalam suatu sistem kordinat, maka ianya juga
semua sama dalam sistem kordinat lain
JadiT =0dan S = T merupakan penyataan yang bebas (sistem) kordinat.

11.5 Metrik

Dalam kordinat Kartesan, ruang datar ruang-masa diberikan oleh metrik Minkowski,
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dalam rangka & “. Kita mahu amkan
ds? = —df“dff”naﬁ

Pilih
ds? = —dxHtdxVg,,
di mana metrik g, merupakan tensor kovarian pangkat 2. Yakni
_ 9§ a8k

gH.V - axuaxvna’ﬁ
Semak yang g, bertransformasi sebagai tensor.

Perhatikan bahawa g bersifat bersimetri, g, = g.,. Jika dilihat sebagai matriks, g,, bukan singular
(boleh diterbalikkan — semak!) dan mempunyai 3 nilai eigen positif dan 1 nilai eigen negatif.

Prinsip kesetaraan memberikan kelengkungan yang menentukan g. Rangka rujukan yang mana daya
graviti telah ditransformasi keluar menurut prinsip kesetaraan (rangka itu rangka memecut setara
daya graviti berkenaan) disebut rangkainersiaan. Dalam rangka ini suatu zarah mengalami kejatuhan
bebas.

Bagi kejatuhan bebas rangka inersiaan zarah berjisim, vektor tak varian terhadap jarak wajar,
dZEa
T = 0, dt?=-ngpdx®dxf

Bila ditransformasikan kepada suatu sistem kordinat sembarangan,

i(@%ﬂ)_awdzxu 928 dxH dxV

T dr\oxt ot ) T 9x* diZ  dxFox¥ dt dt
Maka,
d2x?t dxHtdxv
+Th — =
dt2  ® dt dt
dimana

1 32
i i
KV " 9EX gxHaxV
Ini adalah persamaan gerakan dalam sistem kordinat sembarangan.

Untuk zarah tak berjisim, d 7> = 0, jadi gunakan parameter lain, misalnya o= £°. Manipulasi serupa
memberikan

d2x* 5 dxFdx¥
+ v 7 =
do? " do do

Ingat bahawa
_ 0% 0¢F
Iuv = @m Nap
Oleh itu,
09y 0%¢* 0¢F 08* 92&F
ox%  axtaxrax? 1% T Gxk gxtaxy 1P
Daripada definisi F/lft' kita dapati,
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Jadi,
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Dengan itu,

Gy , 0gny 99ua
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[ditentukan oleh metrik g.

dxt  dt
Dalam had Newtonan, suatu zarah perlahan (d—xT K d—T) dalam medan lemah (g,5= 7,5+ hap hop<<

1) yang pegun,
dg
u 1 00
['00 _Egqu

dalam ruang-masa Minkowski, iaitu,

dh
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ataupun
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Ini memberikan persamaan pergerakan

a2 i (dey? . axt | .
— = —TIj, (=) +terma-terma kecil kerana — kecil (pergerakan perlahan)
dt? dt dr
— __13hgo(dr)?
- 2 9t (d'[)
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da’t
dt? ) )
. dt a“x . dex ..
Oleh itu, == pemalar, dan, ok —%Vhog. Secara klasik, il V¢, jadi hgy = 2¢+ pemalar. Syarat
T

sempadan pada e menghendaki hyy = 0 dan ¢ = 0maka hyy = 2¢p atau goo = (1+2¢). Pada permukaan
proton, keupayaan gravitian ¢ = 103°, permukaan bumi, ¢ = 10°, permukaan matahari, ¢ = 10¢, dan
permukaan kerdil putih, ¢ = 10, jadi dalam kes-kes ini graviti Newtonan masih terpakai bagi zarah-
zarah perlahan.

11.6 Geometri Kebezaan

Dalam kerelatifan am, diandaikan ruang-masa diperihalkan manifold 4 dimensi dengan metrik
Riemannan. Manifold Riemann ialah manifold rata dengan hasildarab terkedalam yang positif,
disebut metrik, yang dengan itu selanjar.

Pada satu titik P sembarangan, adalah sentiasa mungkin memilih kordinat &* terhadap kejiranan P di
mana

gup= Noppada P



99ap
ra pada P

jadig.z= 174s + O(&) berhampiran P. Sistem kordinat ini merupakan rangka inersiaan tempatan pada
P, atau kordinat normal pada P, atau ruang tangen pada P.

. . d T .
Perhatikan bahawa, untuk suatu skalar ¢, terbitan ¢, = ﬁ merupakan (iaitu ia transformasi

. . vkt
seperti) suatu tensor kovarian. Namun pembezaan langsung suatu vektor, vﬂv = a—vbukan tensor,
4 X

. . . . . ovH
apabila disemak transformasinya. Kita mahukan pembezaan kovarian, v’f.v = % + Fv’;vp, dengan
memilih Fv‘:, yang menjadikan keseluruhannya berbentuk tensor. Pilihan
A
KV 9E%* OxHoxV
tadi sebenarnya memenuhi kehendak ini. Pembezaan kovarian terima sumbangan daripada
pembezaan terus terhadap kordinat dipilih, dan sumbangan akibat kordinat yang digunakan.

. . ovH
Perhatikan transformasi PyevEy
x
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Sebutan pertama dikehendaki tetapi sebutan kedua merupakan lebihan.

Lihat pula transformasi Fv’:) -
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T oax? ax'Yax'P T TE T axx ax'Pox'”

Namun
ox™ oxrt _ sk
dx1P dx* p’

iaitu
a2xk  ax't o 9x ' _9xf oxC a2’
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Dengan itu,
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Hatta v, adalah tensor. la adalah pembezaan kovarian ke atas v°.

Bagi tensor-tensor lain, boleh ditunjukkan yang berikut.

— g
Auy = auy — 0,



Tiy =T + OLT — L Ts .

¢;v = ¢,v-

Boleh disemak bahawa g,,,, = 0, maka g,, takvarian terhadap pembezaan kovarian. Juga F&/ﬂ= 0

dalam kordinat normal pada titik P, iaitu pembezaan kovarian serupa pembezaan langsung dalam
kordinat normal, atau pembezaan kovarian ialah pembezaan langsung dalam ruang tangen.

Di sini kita lihat ciri-ciri pembezaan kovarian.

Pembezaan kovarian mengagih, iaitu pembezaan kovarian hasiltambah dua tensor sama dengan
hasiltambah pembezaan kovarian masing-masing tensor-tensor berkenaan,

(A + B) v = A'.'.'.;v + B.'.'.';v-
Juga, pembezaan kovarian suatu hasildarab memenuhi hukum Leibnitz,

Pembezaan kovarian tidak komut, iaitu V.fw = V.Z.v = (V.’Z) secara umumnya tidak sama dengan
; W i,
me. Namun pembezaan kovarian komut dengan pengecutan, yakni (T[lw) (iaitu kecut kemudian
; 0

beda) sama dengan T:f; (iaitu beda kemudian pecut). Pembezaan kovarian juga komut dengan

. . .. _ u_ _u _
menaik dan menurun, misalnya jika Ty, = a,,, maka T); = a.,, (kerana gy, = 0).

Sekarang kita lihat bagaimana kita ukur kelengkungan. Metrik g,, memberi maklumat
kelengkungan, tetapi ia bergantung kepada sistem kordinat yang digunakan. la tensor. la

memberikan ‘simbol Christoffel’ atau ‘kaitan afin’, Fgﬁ, yang seakan tensor tetapi bukan. Adalah

mungkin dipilih sistem kordinat tertentu di atas suatu manifold Riemannan yang mana memberikan
nilai sifar kepada simbol Christoffel pada suatu titik pilihan. Ini ialah sistem kordinat dibawa oleh
jasad dalam jatuhan bebas; simbol Christoffelmuncul dalam persamaan geodesik, yang memberikan
jejak terpendek dalam ruang melengkung. Simbol Christoffel seakan mewakili kelengkungan ruang
masa (misalnya akibat kesan graviti).

Suatu lagi ukuran kelengkungan ialah tensor kelengkungan Riemannan. Tensor Riemannan, atau
tensor kelengkungan Rj;,,, diberi (“kesetaraan Ricci”),
p P _pP
V;uv - V:vu - RUWV"
iaitu ia mengukur betapa tak kalis tukartertibnya pembezaan kovarian dalam ruang berkenaan. Ini
kerana, bila ia sifar, ia bermakna pembezaan kovarian sama dengan pembezaan biasa dan ruang

berkenaan berisometri atau sama dengan ruang datar, ruang Euklidan.

Pembezaan kovarian berkait dengan pengangkutan selari, iaitu pergerakan suatu vektor di atas
suatulengkung, tanpa mengubah arah vektortersebut (terhadap arah didalam ruang tangen kepada
permukaan setempat). Dalam ruang datar Euklidan, pengangkutan selari keliling suatu gelung
membawa suatu vektor itu kembali bertindih atas diri asalnya, tetapi initidak berlaku dalam ruang
melengkung Riemannan secara am. Beza arah awal dan akhir vektor tersebut akibat pengangkutan
selari atas gelung infinitesimal diberikan oleh kelengkungan Riemann.
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Pengangkutan selari suatu vektor di atas permukaan sfera.

Menggantikan untuk V;fw dan V:ﬁu' kita perolehi,
P _rP p p p
Roww = Loy = Do + I lon — I low-

Tensor kelengkungan Riemann bergantung sepenuhnya ke atas metrik.

Sekarang,

1
R/luwc = g/lGRch = E(g/lv,lcu ~IGuver — Y9akyvu + g;uc,v/l) + gnd(ryaruax - F,?;Lr;gl)-
Maka, tensor Riemann punyai ciri-ciri:

simetri— Ryuvie = Ruican
antisimetri— Ry = =Ry = —Rauey = Ruay
kekitaran—  Ryuvi + Racpy + Raiep = 0.

Maka, Ry, punyai hanya 20 komponen bebas.

Kelengkungan boleh juga diberikan oleh tensor kelengkungan Ricci,

— RP o g
R/,tv = Rupv =g° Rpucrv

yang merupakan pengecutan tensor Riemann dalam dua indeksnya. Secara kasar, ia mengukur
sejauh mana geometri suatu tensor metrik berbeza setempat daripada ruang datar. Dalam 3
dimensi, tensor Ricci mengandungi maklumat lengkap tentang kelengkungan ruang berkenaan.

Kelengkungan skalar,
R= g‘“’RW
merupakan ukuran kelengkungan suatu manifold yang tak bergantungkan kordinat.

Satu lagi tensor berguna ialah tensor Weyl,

1 1 1 1 1 1
Cpauv = Rpauv - EgpuRvo + E ngR[I.O' + EgauRvp - E gavRup - ggpvg,uoR + g gpugvaR-

Tensor Riemann memuaskan identiti Bianchi,

R/luwc;n + R/l;mv;x + R/l;ucr/;v =0.
Ini diterbitkan daripada identiti Jacobi bagi pembezaan kovarian, iaitu,

[19,9), Ve + [ 190, 9,19, |+ [, ¥ 19, ] = 0
di mana V,) mewakili perbezaan kovarian terhadap 7.

Mengecut dengan identiti Bianchi dengan g’h’ memberikan



Ryicin = Rumine + Riteny = 0.
Ini membabitkan tensor Ricci. Dikecut seterusnya dengan g“¥,
U —
R;n - Rn;u - R%:v =0,

ataupun,
pn _
9" Ry — 2Ry =0,
yakni,
pn _
G:n =0
di mana

GHV = RHV _%guvR

adalah tensor Einstein. Perhatikan bahawa G#" adalah bersimetri, dan
ng‘“’ = —R.

11.7 Pengangkutan Selari, Geodesik dan Kelengkungan

Sepertidisebut di atas, pembezaan kovarian berkait dengan pengangkutan selari. Dalam pembezaan
suatu tensor T, kesan akibat perubahan dalam sistem kordinat harus dibuang daripada perubahan
‘sebenar’ dalam T. Perubahan ‘sebenar’ inilah hasil pengangkutan selari.

Pengangkutan selari adalah bergantungkan jejak yang diambil. Begitulah pembezaan kovarian

bergantung kepada jejak. Pembezaan kovarian v* atas suatu lengkung x“(s), s nyata, didefinisikan,
Dvi(s) . dvt | pp dxXP o
Ds  ds Po ds
Ini berbentuk tensor, dan bersetuju dengan definisipembe zaan kovarian sepertidi atas, sebelum ini.
Begitulah juga,

Day() _ day | L, dx?

Ds ds PH gs Ao
Diberi vektor A“(s,) di atas suatu titik s = s, di atas lengkung tersebut, definisikan A“(s) dengan
u
%S(S) = 0. Maka dikatakan A*(s) adalah pengangkutan selari A“(s,) di atas lengkung berkenaan.

Geodesik pula ialah lengkung dengan jarak (diukur metrik) terdekat di antara dua titik diberikan. Ini
diperihalkan oleh
d?x# dxPdx° _,
>+ [, =0
dt dr dt P
di mana rmewakili masawajar (jarak 4 dimensi). Sebagaialternatif, 10itab oleh definisikan geodesik
sebagai suatu “garis lurus” dalam ertikata apabila suatu vektor tangen di suatu titik diangkut selari
ke titik lain, adalah selari kepada tangen di situ. Untuk suatu ‘vektor tangen’,
d Jd dx*

ds  oxH s

maka
d?x* dxPdx®_, . dxt

+ -
ds? ds ds P° ds
dengan f ditentukan vektor tangen tadi. Kita boleh pilih parameter supaya f hilang, kemudiannya

menjadikan s = at + b, dengan a dan b pemalar.

Kita boleh kira sisihan geodesik. Bagi dua geodesik berjiranan, x“(s) dan x*(s) + ox*(s),



d?x# _, dxP dx?
ds? P9 ds ds

dan

d?(xt+8xH) d(xP + 8xP)d(x% + 6x9)
— Qg + Fpa(x + 6x) Is Is =

daripada persamaan geodesik tadi. Kembangkan persamaan kedua sehingga peringkat pertama
terhadap o dan kemudian menolak persamaan pertama daripadanya, kita perolehi

d? u L dxPdx® p dxPdx?
F(Sx +Fpaa6x d—d—+2FpGEE—
yang seterusnya memberikan
D sxi =R o dxP dx?
5x Rpas0x® o

Kebolehan mengubah sistem kordmat merumitkan penentuan samada sesuatu ruang itu betul-betul
melengkung, atau hanya kelihatan melengkung akibat pilihan kordinat. Suatu metrik g, adalah rata
atau datar dalam suatu rantau U jika ada kordinat yang boleh dipilih yang memberikan g,z = 144
(Minkowski; kordinat ditulis &,) diseluruh U.

Bagi metrik rata, R¥  adalah sifar. Dalam sistem Minkowski Eor I‘[g";, = 0 di keseluruhan U, maka

pVo
R%, s = 0 di mana-mana. Oleh kerana Rf, s merupakan tensor, maka R;,,,, = 0 untuk mana-mana

sistem kordinat am.

pv

Begitulah, jika vaa = 0, metrik rata. Ini kerana, memilih &* sebagai kordinat normal pada suatu titik

2 2
dalam U, maka di situ, ai? = ;;B = 0. Oleh kerana R§, 5 = %%, 5 — [f , kekangan ke atas R 5

dan denganitu ng&g, dan seterusnya, mengekang pulaterbitan kedua, ketiga, dan seterusnya, bagi
Jap- Maka gap = nqp bagititik-titik berdekatan juga.

11.8 Kekovarianan Am

Kesan medan graviti dilihat sebagai merubahkan ruang-masa, menerusi prinsip kesetaraan. Ruang-
masa ini diperihalkan oleh metriknya.

Suatu persamaan fizik sah dalam medan graviti jika,
1. ia sah dalam tiada graviti, yakni dalam setiap kerangka Lorentz tempatan pada setiap titik
2. ia kovarian am, yakni bentuknya kekal dalam transformasi kordinat am.

Dlberi suatu ruang-masa (yang melengkung, atau tidak), adalah sentiasa mungkin untuk memilih

agaﬁ -0
iI34

kordinat berhampiran titik P yang mana dititik P, g = 1qp, dan

ap
aaFa = —JF dan

a d d y y
ﬁFBV + mFya + @Faﬁ = 0 adalah, F*%;,=-J"dan F,,., + F,,, + F,,, = 0. Proses penggantian 77,5

Contoh bagi elektrodinamik, bentuk kovarian am bagi persamaan Maxwell,

dengan g,, dan g, (ataupun , @) dengan V, (ataupun ;x) dipanggil “gantian minimum”.



11.9 Persamaan Medan Einstein

Graviti membabitkan medan jirim. Kita jangkakan medan-medan ini dan terbitan kovarian berkaitan
akan munculdalam persamaan medan. Medan gravitiberbentuk tensor. Kita postulatkan kewujudan
suatu tensor bersimetri 7%, “tensor tenaga-momentum”, yang bergantung kepada medan-medan
ini, terbitan kovarian, dan metrik, yang mana,

1. 7" menghilang dalam kejiranan U hanya jika medan-medan itu sifar diatas U
2. ™,=0

Kita bandingkan T dengan F*". Kita kaitkan ketumpatan tenaga electromagnet dan arus cas elektrik
dengan ketumpatan tenaga-momentum dan arus tenaga-momentum. Maka ketumpatan p* dalam
sistem zarah-zarah n dengan momentum-4 p,(t) adalah,

TO(x,t) = z p&()83 (X— X (1))
sementara arus p“ adalah
T (x,6) = T pd ()22 63 (x - %, (1)),
Secara am,
B
T (%,£) = 5 pf (6) T2 83 (x — 2, ().
Simetri menghendaki
B _ dx
E .
p n dt
jadi
a B
T (x,t) = X PP 53 (x — x,, (1))

Dengan memasukkan kamiran fungsi delta terhadap masa, kita juga boleh tulis

dxP
regn = [arpgarTnOsee x,0)
dengan argumen fungsi delta berbentuk vektor-4 sekarang. Di bawah transformasi Lorentz, kita
pergi ke masa wajar T, memberikan

T8 (x,t) = Zfdrp,‘{‘(r) 54(X X, (1)).
Ini terdiri daripada vektor x vektor x skalar, maka ia tensor

Capahan arus,

) dxi(t) @
T = Z HoE=raad RACEAO)

= _Zpg(t)—53(x Xn(t))
_ —%T“O(x,t) + 2, 250 53 (x — x,, (1)),

Kita kaitkan
T %k

=G
oxh

di mana G* mewakili “ketumpatan daya”.

G = Z 53(x— n(t))dp" ©




= 2,63 (x— %, () S RED).

Untuk memerihalkan graviti menerusi kerelatifan am, kita perlu dapatkan kelengkungan ruangmasa
akibat kehadiran jisim (atau jisim-tenaga). Kitamahukan persamaan dinamik bagi g,.(x). Kitamencari
persamaan dengan kekovarianan am (yakni persamaan tensor) yang memberikan graviti Newton
dalam had bukan kerelatifan.

Pertimbangkan suatu zarah yang bergerak secara perlahan dalam medan pegun lemah. Perlahan
bermakna
dxt dt
ar @
di mana t = x° dan radalah masa wajar seperti biasa. Medan pegun pula bermakna semua terbitan
masa g,, menghilang. Maka
FM — _ 1 uv m_
00 2 xvV
Untuk medan lemah, metrik ruangmasa hampir datar, iaitu
Gap= Nap* Nap has<< 1.
Dengan itu, bagi medan lemah,

1 oh
a — _— af2"00 2
Too I + 0(h*)
yakni
18h00

o=+554 dan  Ig=0.

Persamaan gerakan, daripada jatuhan bebas zarah berjisim seperti didapati dalam bahagian di atas,
ialah

d?xt u dxP dx®
dr2 PO dr dr

Ini memberikan

d?xt ; (dt)z
— i (==
dr? 00 \dr

;odddt, . dx/ . .
untuk zarah perlahan kerana I); —— kecil, kerana — kecil. Jadi
J dt dt dt

d?xl _ 10hgo (E)Z
dt

dt2 2 dxi
Dan, kerana Iy = 0,
d’t
ke 0
yang bermakna %adalah pemalar. Dengan itu, kita perolehi
2
= —Vho
Ini sepadan dengan mekanik Newton,
d?x
az= 0
dengan keupayaan (graviti) ¢ = - GM/r. Ini bermakna hy, = 2¢ + pemalar. Dipertimbangkan syarat
sempadan, khususnya, pada kedudukan oo, adalah hy, = 0 dan ¢ = 0, menjadikan hyo = 2¢. Ini
bermakna g¢ = - (1+2¢). Jadi dalam keadaan medan rendah dan halaju perlahan, kita perolehi
dinamik Newton, dengan nilai goo sedemikian.

Bagi jirim bukan berkerelatifan, Ty, ~ p. Bagi keupayaan Newtonan ¢, Vi = 4mGp. Jadi,
Vzgoo = _87TGT00.



Persamaan ini tidak pun takvarian Lorentz. Namun, kita boleh teka yang persamaan kovarian untuk
apa-apa taburan jirim adalah berbentuk
Xu=-87GT,,

di mana X, merupakan tensor, terbinadaripada metrik dan terbitan pertama dan keduanya, dengan
Xoo menjadi V2g,, dalam had Newtonan. Juga, kita tahu yang T, bersimetri (T,, = T,,) dan
diabadikan (7, =0). Kita perlukan X, juga punyai ciri ini, tanpa kira apa metrik. Tensor yang boleh
dibina daripada g,, dan terbitan pertama dan keduanya hanyalah g,, dan R,,.,. Tensor-2 (dua
indeks) yang bersimetri hanyalah R,,, g,,R dan g,,. Satu kemungkinan ialah

Xuw=AR,, + Bg,,R
di mana A dan B adalah pemalar. Maka X“,, =AR“,., + B&",R,.Namun, daripada identiti Bianchi, kita
tahu

ZAW;/J = g#VR;/J
ataupun
R, =% &R, =%R,..
Maka
X =0 (2A+B)R,=("%A+B)R,.
u
Untuk X*,, sifar, perlukan samada % A + B= 0 atau R,,= 0. Tetapi R.,= 0 mengimplikasikan Zi’; =0,

yang tidak umumnya benar, misalnya bagi kes jirim tak homogen bukan berkerelatifan. Maka
denganituB=-%A, dan X,, = A(R,,- % g,,R) = AG,, dimana G, ialah tensor Einstein. Sekarang kita
tentukan A dengan mempertimbangkan had Newtonan. Dalam keadaan bukan berkerelatifan,
sewajarnya |T;| << |Too|. Maka, |G;| << |G|, yang bermakna R;=% g;R. Juga, bagi medan lemah
9ap= Nap R= Rk — Roo, maka R =(3/2) R— Ry iaitu R = 2Ryo. Maka
Xoo = A (Roo — 72 gooR)
= 2ARq0.
Kita tahu Roo = R0, dan
R =1 %gav _ azglw _ 9292k angK
Auvie = 3 [gxrkaxt  axkaxt  axvaxt | dxvaxh
Bagi medan pegun, terbitan masa menghilang, dan Rygoo = 0. Juga

1 02900

] + sebutan peringkat kedua.

Riojo=3 dxtoxt
dan
1
Roo = gvzgoo
maka
Xoo = AV?ggo.
Menghendaki Goy = V?goo bermakna A = 1, memberikan
G, =-87GT,,.

Bentuk lain, yang setara, boleh diperolehi dengan mengecutkan persamaan
Ruy —39uR = —81GTy,
dengan g“¥, memberikan
R — 2R = —8nGT,
dan seterusnya
Ry = —81G(Tyy — 29,0 T
Maka dalam ruang kosong,
R, = 0.
Kemungkinan menambahkan pemalar kamiran kepada persamaan medan membolehkan
dimasukkan sebutan Ag,, di sebelah kiri, memberikan,



Guv +Aaguy = KTy,
Persamaan medan Einstein. Tensor Einstein,

_ 1
G,uv = Ruv - EguvR

dan x = 82G. A dikenali sebagai pemalar kosmologi. Untuk kemudahan, dalam banyak analisis, ia

dianggap O.

11.10 Beberapa Penyelesaian

Tensor Einstein G,, punyai 10 komponen tetapi 4 identiti Bianchi bagi G*,, mengekang bilangan
persamaan bebas kepada 6 sahaja. Walaupun kita ada 10 pembolehubah g,, yang tak diketahui,
hanyaada 4 darjah kebebasan. Ini muncul daripada kebebasan membuat transformasi kordinat am,

XX+ &

59/11/: - (fv;/l + é:#;v)

yakni persamaan medan hanya boleh menentukan metrik sehingga kepada suatu transformasi
kordinat am. Bandingkan ini dengan persamaan Maxwell, di mana kita ada 4 yang tak diketahui, A,,
dengan 4 persamaan ¢“F,, = 0, tetapi 0"¢" F,, = 0 mengurangkan bilangan persamaan kepada 3. Satu
darjah kebebasan yang baki, yang sepadan dengan transformasi tolok, A, — A, + 0,a. Biasanya,
suatu pilihan tolok dibuat untuk menetapkan tolok ini. Suatu kemungkinan ialah syarat kordinat
harmonik,

g’”l’}k =0.

Ada beberapa penyelesaian masyhur bagi persamaan medan Einstein. Penyelesaian-penyelesaian
ini biasanya bagi sesuatu keadaan khas.

Suatu penyelesaian bagi R,, = Oialah ruang Minkowski, iaitu dengan metrik goo = -1, g11 = g2, = g33 =
1, dengan yang lain 0. Ruang-masa rata.

Satu penyelesaaian yang masyhurialah penyelesaian Schwarzchild bagi metrik statik yang bersimetri
sferaan. Ini pakai bagi bintang yang tak berputar, misalnya.

Mula-mulakita tuliskan bentuk am untuk metrik statik bersimetri sferaan dalam ruang melengkung.
Ini bermakna kita jangkakan selang masa wajar d 2 tak bergantung kepada t dan hanya bergantung
kepada dx dan x menerusi dx?, x.dx dan x? = r>. Maka bentuk paling am ialah

d 7 = F(r) dt? - 2E(r) dt x.dx — D(r) (x.dx)? — C(r) dx?
dimana F, E, D, dan C adalah pelbagai fungsi terhadap r. Dalam kordinat kutub sferaan 3 dimensi,

d 2 = F(r) dt? = 2rE(r) dt dr— r*D(r) dr* — C(r) (dr? + P d 02 +r? sin20d ¢ 2).
d¢ _ _TE(M) o

ar  F(n) menghapuskan E(r) (dan memodifikasikan D(r)).
Akhirnya, dengan membiarkan r'? = C(r) r?, kita perolehi metrik (dengan menggantikan t’ dengan t

danr denganr)

Definisikan t’ = t + ¢(r), dan mengset

d?=B(r)dt?—A(r)dr*—r* (d@?+sin*60d ¢ ?)
yang dikatakan metrik Schwarzchild dalam bentuk piawai.

Kita mencari mencari penyelesaian kepada persamaan R,, = 0 (yakni di luar bintang). Jadi langkah
0gpu | 99pv _ 0guv
axv OxH dxP

seterusnya kita nilaikan I'”,, dan R,,. Gunakan F,f;, = %g’lp ( )dengan g. = A(r),



Goo="r2, g4s=rsin?6, g, = -B(r), dan selainnya sifar, yang, disongsangkan, g” = 1/A(r), g%’ = 1/r, g**=
1/r’sin?6, g" = -1/B(r), dan selainnya sifar. I'”,, yang bukan sifar hanyalah

[r — 1 dA(T) r _ T 7. — —-rsin?6 r _ 1 dB(1)
™ T 2a(r) dr ’ 00 ™ Ary ¢~ A tt ™ 24(r) dr ’
L% =15 =1, [gs = —sinfcosh, [ =T) =12 Ty, =Ty = coto,
art, ark
dan [ = [f = oS00 Adalah Ry, = 52— Z B4+ [T, — LI, maka
_ Bru(m E(B (r)) (A (r) B (r)) 1A
T 2B(r)  4\B()/\a@) ' B() r A(r)’
_ r _A’(r) B' (1) 1
Rgg = -1+ 2A(r)( A(r) B(r)) AGrY

R¢¢ = sin HRQQ, dan

_ B”(r) B'(r)\ rA'(r)  B'(r) __1B(1)
Ree = 24(r) (A(r) ) (A(r) B(r)) r A(T)’
dengan komponen-komponen sifar.

Sekarang kita mahu selesaikan persamaan-persamaan R, = 0. Kita ada syarat sempadan g,, —
metrik Minkowski, dengan r — o= . Metrik Minkowski dalam kordinat kutub sferaan ialah
d7?=dt? —dr’—r’(d& +sin’0d ¢)

jadi syarat sempadan berikan A(r) — 1dan B(r) — 1 apabila r — o= . Mula-mula perhatikan bahawa
h+ Rt — _—1(£ +ﬂ) jadi jika A dan B bebas, L =% atau AB = pemalar = 1 katakan.
A B ra\a B A B
Menggantikan A(r) sebagai 1/B(r) memberikan
Roo=-1+B'(r)r+ B(r) dan

B"'(r) | B'(r) _ R'e(r)
Rer = 2B(r) ' rB(r)  2rB(r)’
Jadi, jika kita ada Ry sifar, kita ada R,,,= 0. Untuk Rge= 0, dikehendaki %(rB(r)) =1.JadirB(r)=r+c,
atau B(r) = 1+ ¢/r. Jika kita mencari penyelesaian untuk medan dengan jisim pusat M maka
g —>—1-2¢=—1+2Gm/r dengan r — oo, Tetapi g, = — B(r), jadi c = — 2MG dan dengan itu kita
perolehi

2MG

B(r) = 1—— dan

-1
Alr) = [1 — TG , memberikan metrik Schwartzchild,

2MGT
dr? = 1——]d 2— 1—— dr —1r2d0?% — r?sin? 0 d¢?

bagi ruangmasa kosong statik keliling suatu jisim I\/I, dalam kordinat sferaan.

Penyelesaian Reissner-Nordstrom pula ialah bagi ruangmasa diluar suatu jasad bersimetri sferaan
bercas, dengan jisim M dan cas elektrik Q. Metriknya:

21
dr2 = [1 —21:1—G+ i ]dt2 [ M:—G +—4M£Q ] dr? —r2dQ?

dengan penggunaan A, = (Q/r, 0).

Suatu penyelesaian, bagijasad berputar, dengan simetri paksian, disebut penyelesaian Kerr. Kerr

menyelesaikan untuk R,, = 0 dan Neuman telah amkannya kepada G, = —87GT,,. Metrik terhasil

jalah

Q2 = de? — 2MrG

[asin? 6 d¢ — dt]?> + (r? + a?)sin? 6 ddp? + %dr2 + p2dH?

dengan A(r) :=r> —=2MGr+ a? dan *(r, 6) :=r* + a* cos?* 6. Pembolehubah m mewakili jisim jasad, dan
ma adalah momentum sudut pada o°.



Perhatikan penyelesaian Schwarzchild mempunyai kesingularan kordinat (akibat pemilihan sistem
kodinat tertentu) apabila r = 2MG (“jejari Schwarzchild”) Adakah ini kesingularan sebenar? Ini boleh
disiasat menggunakan suatu skalar, yang tidak bergantung kepada kordinat. Misalnya,

2,2
RUVPOR _ 48M%G
uvpa 6

Pembolehubah ini bertelatah baik pada r = 2MG, namun mencapah pada r = 0. Namun, pada jejari
Schwarzchild, ada perubahan dalam telatah metrik. Pada r = 2MG, g;: = 0 dan g,, — o~. Pada jejari
Schwarzchild juga, g:; dan g,, bertukar tanda. Diluar jejari Schwarchild, g;: > 0dan g,, < 0, sementara
dalam lingkungannya, g; < 0 dan g, > 0. Di luar, t adalah seperti-masa dan r seperti-ruang,
sementara dalam jejari Schwarzchild, t jadi seperti-ruang sementara r seperti-masa. Walaupun
pengembara yang mendekati ‘lohong hitam’ sampai kepadanya dalam masa wajar (yang relatif
kepadanya) yang terhingga, bagi seorang pemerhati diluar jejari Schwarzchild, masa yang dia ukur
bagi pengembara tadi memasuki jejari itu adalah tak terhingga. Untuk itu, jarak jejari Schwarzchild
ini dirujuk ‘ufuk peristiwa’. Selepas itu, Kawasan di dalam jejari Schwarchild tidak dapak dicerap oleh
seorang pemerhati di luar. Kejatuhan graviti pada r=0 juga tak dapat dicerap. Apa-apa jasad, dan
bahkan cahaya juga, yang memasuki lohong hitam ini, terus tak dapat lepas keluar, kerana
kelengkungan yang begitu dahsyat.

11.11 Graviti Kuantum

Oleh kerana tiga medan keunsuran yang lain dapat diperihalkan dengan baik sebagai teori medan
kuantum, ada desakan untuk mencari pemerihalan medan kuantum kepada graviti. Bagaimanakah
cara mengahwini teori medan kuantum dengan kerelatifan am?

Yang paling jelas, oleh kerana skala jarak graviti sangat besar berbanding daya-daya kuantum, ialah
untuk menjalankan pengkuantuman daya-daya kuat, lemah dan electromagnet di atas ruang-masa
latar yang melengkung. Mungkin pada amnya, tidak banyak kesan ketara dalam ruang-masa yang
melengkung secara perlahan. Dengan transformasi kordinat, tanganan ruang melengkung tidak
berbeza daripada tanganan ruang rata. Kesan kelengkungan dijangka bererti dalam rantau dengan
medan graviti yang tinggi seperti dalam suatu lohong hitam.

Dalam ruang melengkung, Lagrangean Dirac,

i —

S P(r40 —my
menjadi

i —

SWD, —myp

dimana D, mewakili pembezaan kovarian. D, diberi dalam bahagian 11.7 di atas.

Apapun, latar ruang-masatidaklah bebas melengkung. Kita mahu menjaga aturan jujukan masa dan
kebersebaban. Masalah bila ruang bertukar menjadi seperti masa dan masa seperti ruang, dan ini
bagus dielakkan. Bagaimana hendak difahami teorimedan kuantum merentasi ufuk peristiwa lohong
hitam?

Secara mudah, kita boleh cuba lihat fenomena kuantum di sekitar lohong hitam. Apa yang boleh
berlaku ialah pengeluaran pasangan zarah-antizarah dekat permukaan lohong hitam itu, yang boleh
berlaku secara pantas. Biasanya zarah-antizarah ini musnahabis seula sebelum ia dapat dikesan.



Namun kalau satu daripadanya ditelan ke dalam lohong hitam dan tidak dilihat lagi, dan yang satu
lagi lepas, yang terlepas ini boleh dicerap luar. Jadi, lohong hitam menyinar. Ini dikenali dengan
sinaran Bekenstein-Hawking. Apabila lohong hitam menyinar, ia bekehilangan tenaga/jisim dan
maklumat.

Teori medan kuantum amat berjaya dalam memerihalkan daya-daya subatom. Kiraan usikan seperti
tukarganti kuantum daya dapat dibuat dalam pemerihalan itu. Cubaan juga boleh dibuat untuk
memerihalkan graviti dalam bentuk teori medan kuantum berusikan. Dalam kes ini, dianggap
bahawa metrik adalah metrik rata, ditambah dengan usikan kecil, asas salingtindak, yang
dikuantumkan, memberikan teori medan spin-2 yang tinggal di ruang rata. Teori yang terhasil
mencapah dan tidak ternormalisasi semula. Didapati hanya graviti tanpa jirim dengan rajah
Feynmann sehingga satu gelung sahaja yang terhad; bila dimasukkan jirim, dan dibenarkan dua
gelung dan lebih, kita dapat teori yang tak ternormalsemula.

Satu pendekatan langsung kepada penyatuan kuantum dan kerelatifan ialah untuk
mengkuantumkan graviti secara berkanun. Di sini, operator kuantum yang sepadan menggantikan
kuantiti fizikan. Ini bermakna, metrik berubah menjadi operator kuantum.

Dalam perumusan Hamiltonian mekanik klasik biasa, pendakap Poisson adalah konsep penting.
Suatu sistem koordinat berkanun terdiri daripada pembolehubah kedudukan dan momentum
berkanun atau teritlak yang memenuhi hubungan Poisson-Bracket berkanun,

{Cli,Pj} =6y
di mana pendakap Poisson diberikan oleh

N

{fg}:Z(%g—g-gj—g)

untuk fungsi ruang fasa sembarangan f(q;,p;) dan g(qg;p,). Dengan menggunakan pendakap Poisson,
persamaan Hamilton boleh ditulis semula sebagai,

4 ={quH}

pi = {pi H}
Persamaan ini menggambarkan "aliran" atau orbit dalam ruang fasa yang dihasilkan oleh
Hamiltonian. Diberi suatu fungsi ruang fasa F(q,p), kita ada

d
—Fqup) =1{F, H}.
Dalam pengkuantuman berkanun, pembolehubah-pembolehubah ruang fasa dipromosikan menjadi

operator kuantum dalam ruang Hilbert, dan pendakap Poisson antara pembolehubah ruang fasa
digantikan dengan hubungan komutasi berkanun:

[g, 5] = in
Dalam perwakilan kedudukan, hubungan komutasi ini direalisasikan oleh pilihan:
~ R ., d
(@ = qp(q) dan  pY(q) = —ith P (q)
dan dinamik diperihal persamaan Schrodinger,
L0, =
lhalp = Hlﬁ.

H adalah operatorterhasil daripada Hamiltonan H(g,p) dengan penggantian q—-§=qdanp - p =

., d
—ih—.
dq

Bagi kerelatifan am, kedudukan teritlak adalah g;. Ini berada di atas hipersatah sepertiruang t = t,.t
atau x° perlu diasingkan, sebab ia terbabit dalam menerbitkan momentum teritlak, dan dalam



. . i8S

Hamiltonan. Momentum teritlak, 7t/ = ”
Yy

berkanun, H = X, ¥ gij — L. L pula membabitkan g;dan g;;. Jadi dengan pengkuantuman kanunan,

di mana tindakan S ialah kamiran Langrangean L. Secara

gij = Jij, memberikan ketakpastian dalam ukuran g;.

Untuk pemerihalan Hamiltonan, yang membabitkan pendakap Poisson, masa untuk sistem perlu
ditentukan. Ruang-masa perlu diuraikan kepada hiperpermukaan berlainan t. Uraian ruang-masa
3+1 kepada suatu keluarga hiperpermukaan seakan ruang 3 dimensi terparameter oleh suatu
kordinat masa (sembarangan) membabitkan pengungkapan metrik berbentuk
o= (M 1)
i 9ij
N ialah fungsilelap, diberi oleh dt = N(x,x,) dxo.

Jestru, pengkuantuman berkanun rumit dengan kekeliruan masa kerelatifan dan masa dinamik, dan
juga membabitkan pengkuantuman metrik.

Pendekatan yang agak berjaya dan menarik, dari segi matematiknya, dalam menyatukan graviti
dengan daya medan kuantum yang lain ialah menerusi supersimetri. Supersimetri adalah simetri di
antara boson dan fermion. Seperti ketakvarianan terhadap transformasi tolok tempatan
memberikan salingtindak tolok, ketakvarianan terhadap supersimetri tempatan memberikan
supergraviti.

Supergraviti bentuk termudah memerihalkan saling tindak graviti dengan suatu medan Majorana
spin 3/2. Medan Majorana bercampur keheliksan. Tanpa graviti, tindakan untuk medan spin 3/2
ialah

1 p—
3 f GHVpalpu)/SVvaplpad4x
sementara tindakan supergravitiialah (dengan unit di mana v32nG = 1),

§ = = d*x[eeliel Rib (w) + ¥ y5y, Dy,
Graviti di sini ditulis dalam sebutan vierbein. Ingat

9g* ¢k
guv( x) = ot 9v 2B

Atau,

0820
G @ = 2 = o8 (el (OMas.

eialah dete,, = \- g. Adapun Ruv (w) adalah fungsi terhadap sambungan spin @. Pembezaan
kovarian, diberi

Dplpcr = (ap + wgbzab)lpm
di mana 2%, adalah unsur-unsur kumpulan Lie SO(3,1) untuk transformasi Lorentz. (Dalam
perwakilan lazim,

pi=i(7 0) yij = ek (7 0)
0 -—ot 0 ok

di mana o; adalah matriks Weyl.)

Tindakan ini didapati takvarian terhadap trnasformasi supersimetri tempatan,
Sef = igy*y,
8y, =2D,¢
b — b 1,b 1 b
Swy” = Bi® —2e)Bic +2eiBl¢

di mana



Biﬂ = ig_)/SVaDvlppG/mvP-
Di sini &%(x) merupakan parameter infinitesimal transformasi supersimetri. la bukan nombor biasa
tetapi adalah unsur “ganjil” (berantikomut) suatu algebra Grassman. Medan fermion mengambil
nilai Grassman ganjil, sementara boson genap. Ini supaya pada tahap kuantum, medan-medan
fermion antikomut dan medan-medan boson komut.

Model ini berguna sebab, tambahan kepada ia punyai supersimetri tempatan, ia juga dapat
menyelesaikan masalah gandingan graviti dengan medan spin 3/2. Dalam ruang rata, lagrangean tak
varian terhadap transformasi tolok

51/J#(x) = aua(x)
yang, bersama dengan persamaan medan

R* = ey, 0,1, =0
memberi identiti

HRY=0.
Namun, dalam ruang lengkung, kekonsistenan sepertiini tidak lagi wujud, sehingga kita perkenalkan
terbitan kovarian D, seperti di atas. Ini memberikan persamaan pergerakan yang konsisten.
Pemerihalan sistem didapati dengan menyelsaikan @,.

11.12 Daya tolok daripada Kelengkungan Ruang

Satu lagi pendekatan ke arah penyatuan graviti dan daya-daya laian ialah menerusi model Kaluza-
Klein. Jika graviti boleh diperihalkan sebagai akibat kelengkungan ruang-masa, mungkin daya lain
juga boleh difahamkan sedemikian juga. Untuk ini, dimensi tambahan ruang-masa diperlukan.

Keelektromagnetan boleh dimasukkan dengan menghendaki ruang-masa berdimensi4+1, dengan
kelengkungan dimensi kelima lebihan itu menimbulkan daya itu. Inilah model Kaluza-Klein asal.
Dimensi lebihan itu berbulat, atau kompak, dan berkala. Dimensi lebihan ini memberikan kesan
daya, namun ia tidak dapat dicerapi, kerana jejarinya R yang sangat kecil. Sekurang-kurangnya ia
tidak dapat dapat dicerapi pada jarak gelombang yang lebih besar daripada jejari itu. Had atas
tenaga sebelum dimensi lebihan ini ‘kelihatan’ ialah ~hc/R.

dimensi keS

A
Masa

Ma=sa

.
-

Ruang-3

Ruang-masa 5 dimensi dengan satu ruang dimensi dipadatkan ke atas bulatan yang kecil.

Simetri bulatan dimensi tambahan ini memberikan simetri U(1) keelektromagnetan. Teori Kaluza
mempertimbangkan hanya graviti dalam ruang-masa 5 dimensi(diindeks huruf besar roman), adalah
naik-turun metrik terhadap ruang rata,

gun = un + huw (M,N = 1,5).



hyy terurai kepada zarah-zarah h,, graviton spin 2, h,s, foton, dan suatu skalar hss. Kaluza-Klein
mempertimbangkan medan skalar dalam 5 dimensi. Jika y mewakili dimensi kelima, tindakan
berkenaan ialah

Ss = — [ d*xdy M.[19, 81+ 10,0I? + gZ|¢|*].
y terpadat dalam bulatan berjejari R:

y=y+ 27R.
Kembangkan medan kompleks skalar sebagai siri Fourier,

iny iny
P, y) = L€ ® ¢ (%) = O + Xpuoe® ().
Kamiran terhadap y memberikan S; = 5,/ + S,(, dengan

59 = - fd4x27rRM*[ 3u¢(0)|2 +g§|¢(°)|4],

dan
2 2 2
Sin) =—[d*x ZHRM*ZMO[|6#¢(”)| + (%) lp™| ]+ gandingan kuartik.
S, mewakili suatu skalar tanpa jisim (terma dinamik + terma gandingan-4). S, pula mewakili
suatu ‘menara’ mod-mod berjisim, dengan jisim-jisim (n/R). Bergantung kepada nilai R, ini
merupakan zarah-zarah berat yang tidak berpengaruh padatenagarendah. Oleh kerana peminuman
tidakan tidak dipengaruhi pekali malar kepada tindakan tersebut, perhatikan kita boleh perihalkan
teori 5 dimensi sebagai teori 4 dimensi:
0 2 4
57 == d*x 19,61 + g3l ]
dengan meletakkan
2 _ g%
94 = Sormy
Begitulah juga untuk graviti dan medan tolok,

(4 1 p 4 L powrpO] ...
fdx[lmNR +af f;w]+

dengan
1
Gy = 16m2RM3’

Kekuatan salingtindak ditindas oleh jejari dimensilebihan. Dalam 5 dimensi, gs patutnya berusikan,
namun dalam perspektif 4 dimensi, g, patutnya berganding kuat. Gandingan tolok dalam 5 dimensi
punyai dimensi jisim negatif, maka teori ini tidak ternormal semula. Dalam pandangan 4 dimensi, ini
adalah akibat mod-mod Kaluza-Klein yang tercapai pada skala tenaga tinggi. M* merupakan
penggalan bagi teoriini, yang kita tangani sebagai teori berkesan di bawah skala jisim ini.

Menurut hukum Gauss, medan daya dari suatu cas titik perlu dikamirkan atas permukaan sfera (2
dimensi ruang) untuk 4 dimensi,

gﬁSZE -dS =0
dan permukaan hipersfera (3 dimensi) untuk 5 dimensi,
¢ ,E-dS=Q
memberikan masing-masing, medan dan keupayaan,
E « i, @ o=
72 r
dan
1 1
E « =y D x Tz

Kes kedua berlaku bila r kecil. Namun bila r >> R, bila kamiran ialah atas permukaan hiperlempeng,
yang luasnya berkadaran r?, kes pertama, hukum kuasadua songsang, berlaku seperti biasa.



Untuk memasukkan daya-dayatolok lain, ruang-masa dengan dimensi yang lebih tinggi diperlukan. 1
cas elektromagetan, 3 jenis perisa lemah, dan 3 warna QCD bermakna diperlukan sekurang-
kurangnya 6 dimensi ruang tambahan, untuk memasukkan kesemua daya-daya tolok.



