
Sementara daya nukleus kuat, daya nukleus lemah dan daya keelektromagnetan diperihal baik oleh 

teori medan kuantum, graviti belum sebegitu. Bahkan graviti diterangkan dengan baiknya oleh teori 

kerelatifan am. Teori medan kuantum terbit daripada gabungan teori kuantum dan kerelatifan am. Ia 

bersifat kuantum. Daya terakibat daripada tukarganti zarah maya. Walhal, kerelatifan am ialah teori 

berlandaskan geometri. Daya terakibat daripada kelengkungan ruangmasa. 

 

Kerelatifan am memberi pemerihalan sangat baik untuk graviti. Namun adalah semulajadi untuk 

mencuba mencari teori kuantum untuk graviti. Ini belum menemui kejayaan sebenar lagi.  

 

 

 

11.1 Graviti Newton 

 

Newton telah menyatukan graviti bumi dengan graviti langit. Pergerakan mengorbit tidak lebih 

daripada pergerakan jatuhan. Hukum Newton untuk graviti di antara dua objek berjisim m1 dan m2 

berjarak r di antaranya, daya 

𝐹 = 𝐺
𝑚1𝑚2

𝑟2  

dengan G sebagai pemalar graviti Newton. Jisim menentukan kekuatan salingtindak sesuatu objek 

itu, semacam cas untuk graviti. Hukum ini terpakai untuk objek di bumi dan juga objek di langit. 

Pergerakan objek-objek langit boleh difahami sebagai akibat graviti. 

 

 

 

11.2 Prinsip kesetaraan 

 

Menariknya, ‘jisim’ yang digunakan dalam persamaan graviti Newton dianggap sama dengan ‘jisim’ 

yang digunakan dalam persamaan dinamik Newton, F = ma. Jisim dalam hukum dinamik ialah 

perkadaran pecutan sesuatu objek dikenakan suatu daya, sementara yang dalam hukum graviti ialah 

kekuatan pengaruh graviti atas objek tersebut. 

 

Kesetaraan jisi graviti dengan jisim inersia boleh diuji dalam eksperimen Newton, di mana bandul 

sama panjang dengan bahan berlainan digunakan. Kala bandul-bandul ini berkadaran dengan √(jisim 

inersia/jisim graviti), dan tiada perbezaan dikesan. Eksperimen yang lebih jitu ialah eksperimen 

Eotvos, yang mengukur kilasan akibat kesan kombinasi daya emparan akibat pergerakan bumi dan 

daya graviti dengan bumi dua objek berlainan bahan. 

 

 
Eksperimen Eotvos. Cermin mengukur kilasan bila F1/F2 tak sama G1/G2. 

 



Keseteraan jisim graviti dengan jisim inersia disarankan oleh ‘prinsip kesetaraan’.  Prinsip kesetaraan 

bermakna pecutan gravitian itu sama untuk semua objek walau berlainan jisim, dan dengan itu 

kumpulan objek-objek yang memecut pada kadar sama, adalah seperti merasai satu daya graviti 

yang sama. Ini bermakna daya graviti boleh digantikan dengan bingkai rujukan yang memecut.  

 

 
Kesetaraan bingkai dipecut dan bingkai dalam graviti.  

 

Secara tepat, formulasi Prinsip Kesetaraan oleh Weiberg adalah seperti berikut: 

Pada setiap titik ruang-masa, adalah mungkin untuk memilih suatu “sistem kordinat yang inersiaan 

secara tempatan” yang mana, dalam rantau yang cukup kecil sekeliling titik tersebut, hukum -hukum 

alam adalah dalam bentuk yang sama seperti dalam sistem kordinat Kartesan yang tak memecut, 

tanpa graviti. 

 

 

 

11.3 Kelengkungan ruang-masa 

 

Bingkai yang memecut, bila dilihat pada pensekitaan masa, merupakan siri bingkai-bingkai dengan 

halaju relatif berbeza. Menurut kerelatifan khusus, pada bingkai rujukan dengan halaju relatif v, 

berlaku pengecutan ruang, 

𝑑𝑥 =
1

𝛾(𝑣)
𝑑𝑥0 

di mana 

𝛾(𝑣) ≡
1

√1 − 𝑣2

𝑐2⁄

 

dan pengembangan masa,  

𝑑𝑡 = 𝛾𝑑𝑡0. 

Pengecutan ruang dan pengembangan masa berbeza akibat pemecutan, di bingkai-bingkai 

berjiranan, membawa kepada ruang-masa yang melengkung. Maka daya graviti, yang boleh dilihat 

sebagai akibat bingkai memecut, boleh dilihat sebagai akibat kelengkungan ruang-masa.  

 

Kelengkungan ruang-masa berkordinat x, =0,1,2,3 untuk dimensi 4, diperihalkan oleh metriknya 

g. Unsur jarak ds2 = gdxdx, dengan penggunaan kelaziman hasiltambah indeks yang berulang, 

yang bermakna ds2 =  gdxdx = g00dx0dx0 + g01dx0dx1 + … + g10dx1dx0 + … + g33dx3dx3. Untuk 

ruang datar dimensi 3,  



𝑔𝑖𝑗 = (
1 0 0
0 1 0
0 0 1

), 

i,j = 1,2,3, mewakili x, y, z, ini mengembalikan jarak seperti diberikan teorem Pythagoras, ds2 = 

(dx)+(dx)+(dx). Untuk ruang-masa dimensi 4 datar, 

𝑔𝜇𝜈 = (

−1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

) 

menurut suatu kelaziman, dan  

𝑔𝜇𝜈 = (

1 0
0 −1

0 0
0 0

0 0
0 0

−1 0
0 −1

) 

menurut suatu kezaliman lain, yang tidak mengubah asas fizik, yang kini kita pilih, supaya konsisten 

dengan apa yang kita gunakan sebelum ini. Ini memberikan ds2 = (dx)- (dx)- (dx)-(dx)  dengan 

x sebagai masa t, iaitu unsur jarak dalam kerelalifan. Nilai metrik menentukan bagaimana teorem 

Pythagoras tidak dipatuhi dan dengan itu bagaimana ruang-masa terlengkung. 

 

 

 

11.4 Tensor 

 

Tensor adalah generalisasi skalar (dimensi 0) dan vektor (dimensi 1).  Untuk dimensi 2 dan lebih, 

ruang mungkin melengkung, dan ini diparameterkan oleh metrik ruang berkenaan.  Untuk 

menentukan ungkapan yang betul bagi jarak, kita perlu namakan dua jenis vektor, vektor kovarian 

dan vektor kontravarian. Hasildarab skalar di antara unsur dua jenis vektor ini yang menghasilkan 

unsur jarak, dengan metrik tersirat dalam hubungan antaranya. 

 

Secara formal, ds2 = gdxdx = dxdx = dxdx, yang menunjukkan protokol menurunkan indeks 

menerusi g. Begitulah g digunakan untuk menaikkan indeks gdx
 = dx. x

 dinamakan vektor 

kovarian, sementara x vektor kontravarian. Vektor kovarian dan vektor kontravarian saling 

melengkap, dihubungi oleh metrik. Perhatikan bahawa metrik g perlu bersimetri dan perlu bukan 

singular (boleh disongsangkan). g merupakan fungsi kedudukan. 

 

Perhatikan bahawa perubahan kordinat dalam ruang yang sama boleh memberikan metrik 

berlainan. Misalnya, kordinat Kartesan dan kordinat sferaan, walau memerihalkan ruang datar yang 

sama. Metrik bagi kordinat Kartesan dalam ruang datar 3 dimensi adalah seperti gij yang diberikan di 

atas. Bagi kordinat sferaan,  

𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃 𝑑𝜑2. 

Walaupun metriknya berbeza dengan metrik kordinat Kartesan, ia mewakili ruang dengan geometri 

yang sama, iaitu datar. 

 

Metrik bergantung kepada sistem kordinat yang digunakan. Namun, oleh kerana ds2 tak varian 

terhadap perubahan kordinat, g haruslah suatu tensor. 

 

Suatu vektor kontravarian dalam kordinat 𝑥𝜇 dikaitkan dengan bezaan 
𝜕

𝜕𝑥𝜇
: 

𝑓 →
𝜕𝑓

𝜕𝑥𝜇 



dan ini membentuk asas ruang (tangen) berkenaan: 

𝑣 = 𝑣𝜇 𝜕

𝜕𝑥𝜇
. 

Bila asas kordinat berubah, 𝑥𝜇 → 𝑥′𝜇 , kerana 
𝜕𝑓

𝜕𝑥′𝜇 =
𝜕𝑥𝜈

𝜕𝑥′𝜇

𝜕𝑓

𝜕𝑥𝜈 

maka 
𝜕

𝜕𝑥′𝜇 =
𝜕𝑥𝜈

𝜕𝑥′𝜇

𝜕

𝜕𝑥𝜈 

 

memberikan asas baharu dalam sebutan asas lama. Bagi vektor v, 

𝑣 = 𝑣𝜇
𝜕

𝜕𝑥𝜇 = 𝑣′𝜇
𝜕

𝜕𝑥′𝜇 

ataupun 

= 𝑣𝜇
𝜕𝑥′𝜈

𝜕𝑥𝜇

𝜕

𝜕𝑥′𝜈 = 𝑣′𝜇
𝜕

𝜕𝑥′𝜇. 

Oleh kerana 

𝜕𝑥𝜌

𝜕𝑥′𝜎 ×
𝜕𝑥′𝜎

𝜕𝑥𝜈 = 𝛿𝜎
𝜇

, 

fungsi Kronecker, dan sebagainya, maka 

𝑣𝜇
𝜕𝑥′𝜈

𝜕𝑥𝜇 = 𝑣′𝜈. 

 

Tensor merupakan vektor pangkat tinggi. Transformasi tensor pangkat 2 adalah seperti berikut, 

menurut transformasi vektor tadi: 

𝑇′𝜇𝜈 =
𝜕𝑥′𝜇

𝜕 𝑥𝜌

𝜕𝑥′𝜈

𝜕𝑥𝜎 = 𝑇𝜌𝜎 

dan 

𝑇′𝜇𝜈 =
𝜕𝑥𝜌

𝜕𝑥′𝜇

𝜕𝑥𝜎

𝜕𝑥′𝜈 = 𝑇𝜌𝜎 

dan 

𝑇′𝜈
𝜇

=
𝜕𝑥′𝜇

𝜕𝑥𝜌

𝜕𝑥𝜎

𝜕𝑥′𝜈 = 𝑇𝜎
𝜌

 

Apabila tensor bercampur pangkat 2 dikecutkan, ia menjadi skalar: 

𝑇′𝜇
𝜇

=
𝜕𝑥′𝜇

𝜕𝑥𝜈

𝜕𝑥𝜌

𝜕𝑥′𝜇 𝑇𝜌
𝜈 = 𝛿𝜈

𝜌
𝑇𝜌

𝜈 = 𝑇𝜈
𝜈 = 𝑇𝜇

𝜇
 

 

Perhatikan: 

• jika suatu tensor punyai semua komponen 0 dalam suatu kerangka kordinat, makai a 

semuanya 0 juga dalam sistem kordinat lain 

• jika dua tensor punyai semua komponen sama dalam suatu sistem kordinat, maka ianya juga 

semua sama dalam sistem kordinat lain 

Jadi T = 0 dan S = T merupakan penyataan yang bebas (sistem) kordinat.  

 

 

 

11.5 Metrik 

 

Dalam kordinat Kartesan, ruang datar ruang-masa diberikan oleh metrik Minkowski, 



𝜂𝛼𝛽 = (

1 0
0 −1

0 0
0 0

0 0
0 0

−1 0
0 −1

) 

dalam rangka  . Kita mahu amkan 

𝑑𝑠2 = −𝑑𝜉𝛼𝑑𝜉𝛽 𝜂𝛼𝛽 

Pilih 

𝑑𝑠2 = −𝑑𝑥𝜇𝑑𝑥𝜈𝑔𝜇𝜈 

di mana metrik g merupakan tensor kovarian pangkat 2. Yakni 

𝑔𝜇𝜈 =
𝜕𝜉𝛼

𝜕𝑥𝜇

𝜕𝜉𝛽

𝜕𝑥𝜈 𝜂𝛼𝛽  

Semak yang g bertransformasi sebagai tensor. 

 

Perhatikan bahawa g bersifat bersimetri, g = g. Jika dilihat sebagai matriks, g bukan singular 

(boleh diterbalikkan – semak!) dan mempunyai 3 nilai eigen positif dan 1 nilai eigen negatif.  

 

Prinsip kesetaraan memberikan kelengkungan yang menentukan g. Rangka rujukan yang mana daya 

graviti telah ditransformasi keluar menurut prinsip kesetaraan (rangka itu rangka memecut setara 

daya graviti berkenaan) disebut rangka inersiaan. Dalam rangka ini suatu zarah mengalami kejatuhan 

bebas. 

 

Bagi kejatuhan bebas rangka inersiaan zarah berjisim, vektor tak varian terhadap jarak wajar, 

𝑑2𝜉𝛼

𝑑𝜏2 = 0,        𝑑𝜏2 = −𝜂𝛼𝛽 𝑑𝑥𝛼𝑑𝑥𝛽 

Bila ditransformasikan kepada suatu sistem kordinat sembarangan, 

0 =
𝑑

𝑑𝜏
(

𝜕𝜉𝛼

𝜕𝑥𝜇

𝜕𝑥𝜇

𝜕𝜏
) =

𝜕

𝜕

𝜉𝛼

𝑥𝜇

𝑑2𝑥𝜇

𝑑𝜏2 +
𝜕2𝜉𝛼

𝜕𝑥𝜇𝜕𝑥𝜈

𝑑𝑥𝜇

𝑑𝜏

𝑑𝑥𝜈

𝑑𝜏
 

Maka, 

𝑑2𝑥𝜆

𝑑𝜏2 + Γ𝜇𝜈
𝜆

𝑑𝑥𝜇

𝑑𝜏

𝑑𝑥𝜈

𝑑𝜏
= 0 

di mana 

Γ𝜇𝜈
𝜆 ≔

𝜕𝑥𝜆

𝜕𝜉𝛼

𝜕2𝜉𝛼

𝜕𝑥𝜇𝜕𝑥𝜈 

Ini adalah persamaan gerakan dalam sistem kordinat sembarangan. 

 

Untuk zarah tak berjisim, d2 = 0, jadi gunakan parameter lain, misalnya  ≡  0. Manipulasi serupa 

memberikan 

𝑑2𝑥𝜆

𝑑𝜎2 + Γ𝜇𝜈
𝜆

𝑑𝑥𝜇

𝑑𝜎

𝑑𝑥𝜈

𝑑𝜎
= 0 

 

Ingat bahawa 

𝑔𝜇𝜈 =
𝜕𝜉𝛼

𝜕𝑥𝜇

𝜕𝜉𝛽

𝜕𝑥𝜈 𝜂𝛼𝛽  

Oleh itu, 

𝜕𝑔𝜇𝜈

𝜕𝑥𝜆 =
𝜕2𝜉𝛼

𝜕𝑥𝜆𝜕𝑥𝜇

𝜕𝜉𝛽

𝜕𝑥𝜈 𝜂𝛼𝛽 +
𝜕𝜉𝛼

𝜕𝑥𝜇

𝜕2𝜉𝛽

𝜕𝑥𝜆𝜕𝑥𝜈 𝜂𝛼𝛽  

Daripada definisi Γ𝜆𝜇
𝜌

, kita dapati,  



𝜕𝑔𝜇𝜈

𝜕𝑥𝜆 = Γ𝜆𝜇
𝜌 𝜕𝜉𝛼

𝜕𝑥𝜌

𝜕𝜉𝛽

𝜕𝑥𝜈 𝜂𝛼𝛽 + Γ𝜆𝜈
𝜌 𝜕𝜉𝛼

𝜕𝑥𝜇

𝜕𝜉𝛽

𝜕𝑥𝜌 𝜂𝛼𝛽 

Jadi, 
𝜕𝑔𝜇𝜈

𝜕𝑥𝜆 = Γ𝜆𝜇
𝜌

𝑔𝜌𝜈 + Γ𝜆𝜈
𝜌

𝑔𝜌𝜈 

Dengan itu, 
𝜕𝑔𝜇𝜈

𝜕𝑥𝜆 +
𝜕𝑔𝜆𝜈

𝜕 𝑥𝜇 −
𝜕𝑔𝜇𝜆

𝜕𝑥𝜈 = Γ𝜆𝜇
𝜌

𝑔𝜌𝜈 + Γ𝜆𝜈
𝜌

𝑔𝜌𝜈 + Γ𝜇𝜆
𝜌

𝑔𝜌𝜈 + Γ𝜇𝜈
𝜌

𝑔𝜌𝜈 − Γ𝜈𝜇
𝜌

𝑔𝜌𝜆 − Γ𝜈𝜆
𝜌

𝑔𝜌𝜆 = 2𝑔𝜅𝜈Γ𝜆𝜇
𝜅  

ataupun 

Γ𝜆𝜇
𝜎 =

1

2
𝑔𝜈𝜎 {

𝜕𝑔𝜇𝜈

𝜕𝑥𝜆 +
𝜕𝑔𝜆𝜈

𝜕𝑥𝜇 −
𝜕𝑔𝜇𝜆

𝜕𝑥𝜈
} 

 ditentukan oleh metrik g. 

 

Dalam had Newtonan, suatu zarah perlahan (
𝑑𝑥𝑖

𝑑𝜏
≪

𝑑𝑡

𝑑𝜏
) dalam medan lemah (g =  + h, h << 

1) yang pegun, 

Γ00
𝜇

= −
1

2
𝑔𝜇𝜈

𝜕𝑔00

𝜕𝑥𝜈  

dalam ruang-masa Minkowski, iaitu, 

Γ00
𝛼 = −

1

2
𝜂𝛼𝛽

𝜕ℎ00

𝜕𝑥𝛽 + 𝑂(ℎ2) 

ataupun 

Γ00
𝑖 =

1

2

𝜕ℎ00

𝜕𝑥𝑖 ,           Γ00
0 = 0 

Ini memberikan persamaan pergerakan 
𝑑2𝑥𝑖

𝑑𝜏2
= −Γ00

𝑖 (
𝑑𝑡

𝑑𝜏
)

2

+ terma-terma kecil kerana 
𝑑𝑥𝑖

𝑑𝜏
 kecil (pergerakan perlahan) 

  = −1

2
 
𝜕ℎ00

𝜕 𝑥𝑖
(𝑑𝑡

𝑑𝜏
)

2
 

dan 

     
𝑑2𝑡

𝑑𝜏2
= 0 

Oleh itu, 
𝑑𝑡

𝑑𝜏
= pemalar, dan, 

𝑑2x

𝑑𝑡2
= −1

2
 𝛁ℎ00. Secara klasik, 

𝑑2x

𝑑𝑡2
= − 𝛁𝜙, jadi h00 = 2 + pemalar. Syarat 

sempadan pada ∞ menghendaki h00 = 0 dan  = 0 maka h00 = 2 atau g00 = (1+2). Pada permukaan 

proton, keupayaan gravitian  = 10-39, permukaan bumi,  = 10-9, permukaan matahari,  = 10-6, dan 

permukaan kerdil putih,  = 10-4, jadi dalam kes-kes ini graviti Newtonan masih terpakai bagi zarah-

zarah perlahan. 

 

 

 

11.6 Geometri Kebezaan 

 

Dalam kerelatifan am, diandaikan ruang-masa diperihalkan manifold 4 dimensi dengan metrik 

Riemannan. Manifold Riemann ialah manifold rata dengan hasildarab terkedalam yang positif, 

disebut metrik, yang dengan itu selanjar. 

 

Pada satu titik P sembarangan, adalah sentiasa mungkin memilih kordinat  terhadap kejiranan P di 

mana 

  g =  pada P  



  
𝜕𝑔𝛼𝛽

𝜕𝜉𝛾
 pada P 

jadi g =  + O(2) berhampiran P. Sistem kordinat ini merupakan rangka inersiaan tempatan pada 

P, atau kordinat normal pada P, atau ruang tangen pada P. 

 

Perhatikan bahawa, untuk suatu skalar , terbitan 𝜙,𝜇 ≔
𝜕𝜙

𝜕𝑥𝜇
 merupakan (iaitu ia transformasi 

seperti) suatu tensor kovarian. Namun pembezaan langsung suatu vektor, 𝑣   ,𝜈
𝜇

≔
𝜕𝑣𝜇

𝜕𝑥𝜈
 bukan tensor, 

apabila disemak transformasinya. Kita mahukan pembezaan kovarian, 𝑣   ;𝜈
𝜇

=
𝜕𝑣𝜇

𝜕𝑥𝜈
+ Γ𝜈𝜌

𝜇
𝑣𝜌, dengan 

memilih Γ𝜈𝜌
𝜇

 yang menjadikan keseluruhannya berbentuk tensor. Pilihan 

Γ𝜇𝜈
𝜌

≔
𝜕𝑥𝜆

𝜕𝜉𝛼

𝜕2𝜉𝛼

𝜕𝑥𝜇𝜕𝑥𝜈 

tadi sebenarnya memenuhi kehendak ini. Pembezaan kovarian terima sumbangan daripada 

pembezaan terus terhadap kordinat dipilih, dan sumbangan akibat kordinat yang digunakan.  

 

Perhatikan transformasi 
𝜕𝑣𝜇

𝜕𝑥𝜈
 :-  

 
𝜕𝑣′𝜇

𝜕𝑥′𝜈
 =

𝜕

𝜕𝑥′𝜈
(

𝜕𝑥′𝜇

𝜕𝑥𝜌
𝑣𝜌) 

  =
𝜕𝑥𝜏

𝜕𝑥′𝜈

𝜕

𝜕𝑥𝜏
(

𝜕𝑥′𝜇

𝜕𝑥𝜌
𝑣𝜌) 

  =
𝜕𝑥𝜏

𝜕𝑥′𝜈

𝜕𝑥′𝜇

𝜕𝑥𝜌

𝜕𝑣𝜌

𝜕𝑥𝜏
+

𝜕𝑥𝜏

𝜕𝑥′𝜈
(

𝜕2𝑥′𝜇

𝜕𝑥𝜏 𝜕𝑥𝜌
) 𝑣𝜌. 

Sebutan pertama dikehendaki tetapi sebutan kedua merupakan lebihan. 

 

Lihat pula transformasi Γ𝜈𝜌
𝜇

 :- 

 Γ′𝜈𝜌
𝜇

 = (
𝜕𝑥′𝜇

𝜕𝜉𝛼
) (

𝜕2𝜉𝛼

𝜕𝑥′𝜈𝜕𝑥′𝜌
) 

  = (
𝜕𝑥′ 𝜇

𝜕𝑥𝜙

𝜕𝑥𝜙

𝜕 𝜉𝛼
)

𝜕

𝜕𝑥′ 𝜈 (
𝜕𝜉𝛼

𝜕𝑥𝜅

𝜕𝑥𝜅

𝜕𝑥′𝜌) 

  =
𝜕𝑥′ 𝜇

𝜕𝑥𝜙

𝜕𝑥𝜙

𝜕 𝜉𝛼
(

𝜕𝑥𝜏

𝜕𝑥′ 𝜈
𝜕2𝜉𝛼

𝜕𝑥𝜏 𝜕𝑥𝜅

𝜕𝑥𝜅

𝜕𝑥′ 𝜌 +
𝜕𝜉𝛼

𝜕𝑥𝜅

𝜕2𝑥𝜅

𝜕𝑥′ 𝜈
𝜕𝑥′𝜌) 

  =
𝜕𝑥′ 𝜇

𝜕𝑥𝜙

𝜕𝑥𝜏

𝜕𝑥′ 𝜈
𝜕𝑥𝜅

𝜕𝑥′ 𝜌 Γ′𝜏𝜅
𝜙

+
𝜕𝑥′𝜇

𝜕𝑥𝜅

𝜕2𝑥𝜅

𝜕𝑥′𝜌
𝜕𝑥′ 𝜈   . 

Namun 

 
𝜕𝑥𝜅

𝜕𝑥′𝜌

𝜕𝑥′𝜇

𝜕𝑥𝜅
= 𝛿𝜌

𝜇
, 

iaitu 

 
𝜕2𝑥𝜅

𝜕𝑥′ 𝜌
𝜕𝑥′ 𝜈

𝜕𝑥′ 𝜇

𝜕𝑥𝜅
= −

𝜕𝑥𝜅

𝜕𝑥′ 𝜌
𝜕2𝑥′ 𝜇

𝜕𝑥′ 𝜈
𝜕𝑥𝜅

= −
𝜕𝑥𝜅

𝜕𝑥′ 𝜌
𝜕𝑥𝜎

𝜕𝑥′ 𝜈
𝜕2𝑥′ 𝜇

𝜕𝑥𝜎𝜕𝑥𝜅
 , 

maka 

 Γ′𝜈𝜌
𝜇

=
𝜕𝑥′𝜇

𝜕𝑥𝜙

𝜕𝑥𝜏

𝜕𝑥′𝜈
𝜕𝑥𝜅

𝜕𝑥′𝜌 Γ𝜏𝜅
𝜙

−
𝜕𝑥𝜅

𝜕𝑥′ 𝜌
𝜕𝑥𝜎

𝜕𝑥′𝜈
𝜕2𝑥′ 𝜇

𝜕𝑥𝜎𝜕𝑥𝜅
 . 

Dengan itu, 

 𝑣′   ;𝜈
𝜇

≔ 𝑣′
   ,𝜈
𝜇

+ Γ′𝜈𝜌
𝜇

𝑣′𝜌 

  =
𝜕𝑥𝜏

𝜕𝑥′ 𝜈
𝜕𝑥′ 𝜇

𝜕𝑥𝜎
[𝑣   ,𝜏

𝜎 + Γ𝜏𝜒
𝜎 𝑣𝜒] +

𝜕𝑥𝜏

𝜕𝑥′ 𝜈 (
𝜕2𝑥′ 𝜇

𝜕𝑥𝜏𝜕𝑥𝜌
)𝑣𝜌 −

𝜕𝑥𝜅

𝜕𝑥′ 𝜒
𝜕𝑥𝜏

𝜕𝑥′ 𝜈
𝜕2𝑥′ 𝜇

𝜕𝑥𝜏 𝜕𝑥𝜅

𝜕𝑥′ 𝜒

𝜕𝑥𝜌
𝑣𝜌 

  =
𝜕𝑥𝜏

𝜕𝑥′ 𝜈
𝜕𝑥′ 𝜇

𝜕𝑥𝜎
𝑣   ;𝜏

𝜎  . 

Hatta 𝑣   ;𝜏
𝜎  adalah tensor. Ia adalah pembezaan kovarian ke atas v. 

 

Bagi tensor-tensor lain, boleh ditunjukkan yang berikut. 

  𝑎𝜇;𝜈 = 𝑎𝜇,𝜈 − Γ𝜈𝜇
𝜎 𝑎𝜎 . 



  T𝜇;𝜈
𝜏 = T𝜇,𝜈

𝜏 + Γ𝜈𝜎
𝜏 T𝜇

𝜎 − Γ𝜈𝜇
𝜎 T𝜎

𝜏 . 

  𝜙;𝜈 = 𝜙,𝜈. 

 

Boleh disemak bahawa g ; = 0, maka g takvarian terhadap pembezaan kovarian. Juga Γ𝛼𝛽
𝛾

= 0 

dalam kordinat normal pada titik P, iaitu pembezaan kovarian serupa pembezaan langsung dalam 

kordinat normal, atau pembezaan kovarian ialah pembezaan langsung dalam ruang tangen. 

 

Di sini kita lihat ciri-ciri pembezaan kovarian. 

 

Pembezaan kovarian mengagih, iaitu pembezaan kovarian hasiltambah dua tensor sama dengan 

hasiltambah pembezaan kovarian masing-masing tensor-tensor berkenaan, 

(A…
… + B…

…);𝜈 = A…;𝜈
… + B…;𝜈

… . 

Juga, pembezaan kovarian suatu hasildarab memenuhi hukum Leibnitz, 

(A…
… B…

…);𝜌 = A…;𝜌
… B…

… + A…
… B…;𝜌

… . 

 

Pembezaan kovarian tidak komut, iaitu V;𝜇𝜈
𝜌

≡ V;𝜇;𝜈
𝜌

≡ (V;𝜇
𝜌 )

;𝜈
 secara umumnya tidak sama dengan 

V;𝜈𝜇
𝜌

. Namun pembezaan kovarian komut dengan pengecutan, yakni (T𝜇
𝜇𝜎)

;𝜌
  (iaitu kecut kemudian 

beda) sama dengan T𝜇;𝜌
𝜇𝜎

 (iaitu beda kemudian pecut). Pembezaan kovarian juga komut dengan 

menaik dan menurun, misalnya jika T𝜇𝜈 = a𝜇;𝜈  maka T𝜈
𝜇

=  a;𝜈
𝜇

  (kerana g𝜇𝜈;𝜌 = 0). 

 

Sekarang kita lihat bagaimana kita ukur kelengkungan. Metrik g  memberi maklumat 

kelengkungan, tetapi ia bergantung kepada sistem kordinat yang digunakan.  Ia tensor. Ia 

memberikan ‘sImbol Christoffel’ atau ‘kaitan afin’, Γ𝛼𝛽
𝛾

, yang seakan tensor tetapi bukan. Adalah 

mungkin dipilih sistem kordinat tertentu di atas suatu manifold Riemannan yang mana memberikan 

nilai sifar kepada simbol Christoffel pada suatu titik pilihan. Ini ialah sistem kordinat dibawa oleh 

jasad dalam jatuhan bebas; simbol Christoffel muncul dalam persamaan geodesik, yang memberikan 

jejak terpendek dalam ruang melengkung. Simbol Christoffel seakan mewakili kelengkungan ruang 

masa (misalnya akibat kesan graviti).  

 

Suatu lagi ukuran kelengkungan ialah tensor kelengkungan Riemannan. Tensor Riemannan, atau 

tensor kelengkungan R𝜌𝜎𝜇𝜈
𝜏  diberi (“kesetaraan Ricci”), 

V;𝜇𝜈
𝜌

− V;𝜈𝜇
𝜌

= R𝜎𝜇𝜈
𝜌

𝑉𝜎 

iaitu ia mengukur betapa tak kalis tukartertibnya pembezaan kovarian dalam ruang berkenaan. Ini 

kerana, bila ia sifar, ia bermakna pembezaan kovarian sama dengan pembezaan biasa dan ruang 

berkenaan berisometri atau sama dengan ruang datar, ruang Euklidan. 

 

Pembezaan kovarian berkait dengan pengangkutan selari, iaitu pergerakan suatu vektor di atas 

suatu lengkung, tanpa mengubah arah vektor tersebut (terhadap arah di dalam ruang tangen kepada 

permukaan setempat). Dalam ruang datar Euklidan, pengangkutan selari keliling suatu gelung 

membawa suatu vektor itu kembali bertindih atas diri asalnya, tetapi ini tidak berlaku dalam ruang 

melengkung Riemannan secara am. Beza arah awal dan akhir vektor tersebut akibat pengangkutan 

selari atas gelung infinitesimal diberikan oleh kelengkungan Riemann.  

 



 
Pengangkutan selari suatu vektor di atas permukaan sfera. 

 

Menggantikan untuk V;𝜇𝜈
𝜌

 dan V;𝜈𝜇
𝜌

, kita perolehi, 

R𝜎𝜇𝜈
𝜌

= Γ𝜇𝜎,𝜈
𝜌

− Γ𝜈𝜎,𝜇
𝜌

+ Γ𝜏𝜈
𝜌

Γ𝜎𝜇
𝜏 − Γ𝜏𝜇

𝜌
Γ𝜎𝜈

𝜏 . 

Tensor kelengkungan Riemann bergantung sepenuhnya ke atas metrik.  

 

Sekarang, 

 𝑅𝜆𝜇𝜈𝜅 = 𝑔𝜆𝜎R𝜇𝜈𝜅
𝜌

=
1

2
(𝑔𝜆𝜈,𝜅𝜇 − 𝑔𝜇𝜈,𝜅𝜆 − 𝑔𝜆𝜅,𝜈𝜇 + 𝑔𝜇𝜅,𝜈𝜆) + 𝑔𝜂𝜎(Γ𝜈𝜆

𝜂
Γ𝜇𝜅

𝜎 − Γ𝜅𝜆
𝜂

Γ𝜇𝜈
𝜎 ). 

Maka, tensor Riemann punyai ciri-ciri: 

simetri –  𝑅𝜆𝜇𝜈𝜅 = 𝑅𝜈𝜅𝜆𝜇 

antisimetri – 𝑅𝜆𝜇𝜈𝜅 = −𝑅𝜇𝜆𝜈𝜅 = −𝑅𝜆𝜇𝜅𝜈 = 𝑅𝜇𝜆𝜅𝜈 

kekitaran – 𝑅𝜆𝜇𝜈𝜅 + 𝑅𝜆𝜅𝜇𝜈 + 𝑅𝜆𝜈𝜅𝜇 = 0. 

Maka, 𝑅𝜆𝜇𝜈𝜅 punyai hanya 20 komponen bebas. 

 

 

Kelengkungan boleh juga diberikan oleh tensor kelengkungan Ricci,  

𝑅𝜇𝜈 ≡ R𝜇𝜌𝜈
𝜌

= 𝑔𝜌𝜎𝑅𝜌𝜇𝜎𝜈 

yang merupakan pengecutan tensor Riemann dalam dua indeksnya. Secara kasar, ia mengukur 

sejauh mana geometri suatu tensor metrik berbeza setempat daripada ruang datar. Dalam 3 

dimensi, tensor Ricci mengandungi maklumat lengkap tentang kelengkungan ruang berkenaan.  

 

Kelengkungan skalar, 

𝑅 ≡ 𝑔𝜇𝜈 𝑅𝜇𝜈 

merupakan ukuran kelengkungan suatu manifold yang tak bergantungkan kordinat.  

 

Satu lagi tensor berguna ialah tensor Weyl, 

𝐶𝜌𝜎𝜇𝜈 = 𝑅𝜌𝜎𝜇𝜈 −
1

2
𝑔𝜌𝜇𝑅𝜈𝜎 +

1

2
𝑔𝜌𝜈𝑅𝜇𝜎 +

1

2
𝑔𝜎𝜇𝑅𝜈𝜌 −

1

2
𝑔𝜎𝜈𝑅𝜇𝜌 −

1

6
𝑔𝜌𝜈𝑔𝜇𝜎𝑅 +

1

6
𝑔𝜌𝜇𝑔𝜈𝜎𝑅. 

 

Tensor Riemann memuaskan identiti Bianchi, 

𝑅𝜆𝜇𝜈𝜅;𝜂 + 𝑅𝜆𝜇𝜂𝜈;𝜅 + 𝑅𝜆𝜇𝜅𝜂;𝜈 = 0. 

Ini diterbitkan daripada identiti Jacobi bagi pembezaan kovarian, iaitu, 

[[∇𝜂 ,∇𝜈], ∇𝜅]+ [[∇𝜈, ∇𝜅], ∇𝜂]+ [[∇𝜅, ∇𝜂],∇𝜈] = 0 

di mana ∇𝜂 mewakili perbezaan kovarian terhadap . 

 

Mengecut dengan identiti Bianchi dengan 𝑔𝜆𝜈  memberikan 



𝑅𝜇𝜅;𝜂 − 𝑅𝜇𝜂;𝜅 + R𝜇𝜅𝜂;𝜈
𝜈 = 0. 

Ini membabitkan tensor Ricci. Dikecut seterusnya dengan 𝑔𝜇𝜅, 

𝑅;𝜂 − R𝜂;𝜇
𝜇

− R𝜂;𝜈
𝜈 = 0, 

ataupun, 

𝑔𝜌𝜂𝑅;𝜂 − 2R;𝜂
𝜌𝜂

= 0, 

yakni, 

G;𝜂
𝜌𝜂

= 0 

di mana 

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈 𝑅 

adalah tensor Einstein. Perhatikan bahawa 𝐺𝜇𝜈 adalah bersimetri, dan 

𝑔𝜇𝜈𝐺𝜇𝜈 = −𝑅. 

 

 

 

11.7 Pengangkutan Selari, Geodesik dan Kelengkungan 

 

Seperti disebut di atas, pembezaan kovarian berkait dengan pengangkutan selari. Dalam pembezaan 

suatu tensor T, kesan akibat perubahan dalam sistem kordinat harus dibuang daripada perubahan 

‘sebenar’ dalam T. Perubahan ‘sebenar’ inilah hasil pengangkutan selari.  

 

Pengangkutan selari adalah bergantungkan jejak yang diambil.  Begitulah pembezaan kovarian 

bergantung kepada jejak. Pembezaan kovarian v atas suatu lengkung x(s), s nyata, didefinisikan, 
𝐷𝑣𝜇(𝑠)

𝐷𝑠
≔

𝑑𝑣𝜇

𝑑𝑠
+ Γ𝜌𝜎

𝜇 𝑑𝑥𝜌

𝑑𝑠
𝑣𝜎. 

Ini berbentuk tensor, dan bersetuju dengan definisi pembezaan kovarian seperti di atas, sebelum ini. 

Begitulah juga, 
𝐷𝑎𝜇(𝑠)

𝐷𝑠
≔

𝑑𝑎𝜇

𝑑𝑠
+ Γ𝜌𝜇

𝜎 𝑑𝑥𝜌

𝑑𝑠
𝑎𝜎. 

Diberi vektor A(s0) di atas suatu titik s = s0 di atas lengkung tersebut, definisikan A(s) dengan 
𝐷𝐴𝜇(𝑠)

𝐷𝑠
= 0. Maka dikatakan A(s) adalah pengangkutan selari A(s0) di atas lengkung berkenaan. 

 

Geodesik pula ialah lengkung dengan jarak (diukur metrik) terdekat di antara dua titik diberikan.  Ini 

diperihalkan oleh 

𝑑2𝑥𝜇

𝑑𝜏2 +
𝑑𝑥𝜌

𝑑𝜏

𝑑𝑥𝜎

𝑑𝜏
Γ𝜌𝜎

𝜇
= 0 

di mana  mewakili masa wajar (jarak 4 dimensi). Sebagai alternatif, 10itab oleh definisikan geodesik 

sebagai suatu “garis lurus” dalam ertikata apabila suatu vektor tangen di suatu titik diangkut selari 

ke titik lain, adalah selari kepada tangen di situ. Untuk suatu ‘vektor tangen’,  
𝜕

𝜕𝑠
=

𝜕

𝜕𝑥𝜇

𝜕𝑥𝜇

𝜕𝑠
 

maka 

𝑑2𝑥𝜇

𝑑𝑠2 +
𝑑𝑥𝜌

𝑑𝑠

𝑑𝑥𝜎

𝑑𝑠
Γ𝜌𝜎

𝜇
= 𝑓

𝑑𝑥𝜇

𝑑𝑠
 

dengan f ditentukan vektor tangen tadi. Kita boleh pilih parameter supaya f hilang, kemudiannya 

menjadikan s = a + b, dengan a dan b pemalar. 

 

Kita boleh kira sisihan geodesik. Bagi dua geodesik berjiranan, x(s) dan x(s) +  x(s), 



𝑑2𝑥𝜇

𝑑𝑠2 + Γ𝜌𝜎
𝜇 𝑑𝑥𝜌

𝑑𝑠

𝑑𝑥𝜎

𝑑𝑠
= 0 

dan 

𝑑2(𝑥𝜇 + 𝛿𝑥𝜇)

𝑑𝑠2 + Γ𝜌𝜎
𝜇 (𝑥 + 𝛿𝑥)

𝑑(𝑥𝜌 + 𝛿𝑥𝜌)

𝑑𝑠

𝑑(𝑥𝜎 + 𝛿𝑥𝜎)

𝑑𝑠
= 0 

daripada persamaan geodesik tadi. Kembangkan persamaan kedua sehingga peringkat pertama 

terhadap x dan kemudian menolak persamaan pertama daripadanya, kita perolehi 

𝑑2

𝑑𝑠2 𝛿𝑥𝜇 + Γ𝜌𝜎,𝛼
𝜇

𝛿𝑥𝛼
𝑑𝑥𝜌

𝑑𝑠

𝑑𝑥𝜎

𝑑𝑠
+ 2Γ𝜌𝜎

𝜇 𝑑𝑥𝜌

𝑑𝑠

𝑑𝑥𝜎

𝑑𝑠
= 0 

yang seterusnya memberikan 
𝐷2

𝐷𝑠2
𝛿𝑥𝜇 = R𝜌𝛼𝜎

𝜇
𝛿𝑥𝛼 𝑑𝑥𝜌

𝑑𝑠

𝑑𝑥𝜎

𝑑𝑠
 . 

Kebolehan mengubah sistem kordinat merumitkan penentuan samada sesuatu ruang itu betul-betul 

melengkung, atau hanya kelihatan melengkung akibat pilihan kordinat. Suatu metrik g adalah rata 

atau datar dalam suatu rantau U jika ada kordinat yang boleh dipilih yang memberikan g =  

(Minkowski; kordinat ditulis ) di seluruh U. 

 

Bagi metrik rata, R𝜌𝜈𝜎
𝜇

 adalah sifar. Dalam sistem Minkowski ,  Γ𝛽𝛾
𝛼 = 0 di keseluruhan U, maka 

R𝛽𝛾𝛿
𝛼 = 0 di mana-mana. Oleh kerana R𝛽𝛾𝛿

𝛼  merupakan tensor, maka R𝜌𝜈𝜎
𝜇

= 0  untuk mana-mana 

sistem kordinat am. 

 

Begitulah, jika R𝜌𝜈𝜎
𝜇

 = 0, metrik rata. Ini kerana, memilih  sebagai kordinat normal pada suatu titik 

dalam U, maka di situ,  
𝜕𝑔𝛼𝛽

𝜕𝜉𝛼
=

𝜕𝜂𝛼𝛽

𝜕𝜉𝛼
= 0. Oleh kerana R𝛽𝛾𝛿

𝛼 = Γ𝛽𝛾,𝛿
𝛼 − Γ𝛽𝛿,𝛾

𝛼 , kekangan ke atas R𝛽𝛾𝛿
𝛼  

dan dengan itu R𝛽𝛾𝛿,𝜀
𝛼 , dan seterusnya, mengekang pula terbitan kedua, ketiga, dan seterusnya, bagi 

𝑔𝛼𝛽. Maka 𝑔𝛼𝛽 = 𝜂𝛼𝛽 bagi titik-titik berdekatan juga. 

 

 

 

11.8 Kekovarianan Am 

 

Kesan medan graviti dilihat sebagai merubahkan ruang-masa, menerusi prinsip kesetaraan. Ruang-

masa ini diperihalkan oleh metriknya.  

 

Suatu persamaan fizik sah dalam medan graviti jika, 

1. ia sah dalam tiada graviti, yakni dalam setiap kerangka Lorentz tempatan pada setiap titik 

2. ia kovarian am, yakni bentuknya kekal dalam transformasi kordinat am. 

 

DIberi suatu ruang-masa (yang melengkung, atau tidak), adalah sentiasa mungkin untuk memilih 

kordinat berhampiran titik P yang mana di titik P, 𝑔𝛼𝛽 = 𝜂𝛼𝛽, dan 
𝜕𝑔𝛼𝛽

𝜕𝜉𝛾
= 0. 

 

Contoh bagi elektrodinamik, bentuk kovarian am bagi persamaan Maxwell,  
𝜕𝐹𝛼𝛽

𝜕𝑥𝛼
= −𝐽𝛽 dan 

𝜕

𝜕𝑥𝛼
𝐹𝛽𝛾 +

𝜕

𝜕𝑥𝛽
𝐹𝛾𝛼 +

𝜕

𝜕𝑥𝛾
𝐹𝛼𝛽 = 0 adalah, F; = - J dan F; + F; + F; = 0. Proses penggantian  

dengan g dan  (ataupun ,) dengan ∇𝜇 (ataupun ;) dipanggil “gantian minimum”. 

 

 

 



11.9 Persamaan Medan Einstein 

 

Graviti membabitkan medan jirim. Kita jangkakan medan-medan ini dan terbitan kovarian berkaitan 

akan muncul dalam persamaan medan. Medan graviti berbentuk tensor. Kita postulatkan kewujudan 

suatu tensor bersimetri T, “tensor tenaga-momentum”, yang bergantung kepada medan-medan 

ini, terbitan kovarian, dan metrik, yang mana, 

1. T menghilang dalam kejiranan U hanya jika medan-medan itu sifar di atas U 

2. T
; = 0 

 

Kita bandingkan T  dengan F. Kita kaitkan ketumpatan tenaga electromagnet dan arus cas elektrik 

dengan ketumpatan tenaga-momentum dan arus tenaga-momentum. Maka ketumpatan p dalam 

sistem zarah-zarah n dengan momentum-4 pn(t) adalah, 

𝑇𝛼0(x, 𝑡) ≔ ∑ 𝑝𝑛
𝛼(𝑡)𝛿3(x − x𝑛(𝑡)) 

sementara arus p adalah 

𝑇𝛼𝑖(x,𝑡) = ∑ 𝑝𝑛
𝛼(𝑡)

𝑑𝑥𝑛
𝑖 (𝑡)

𝑑𝑡
𝛿3(x − x𝑛(𝑡)). 

Secara am, 

𝑇𝛼𝛽 (x, 𝑡) = ∑ 𝑝𝑛
𝛼(𝑡)

𝑑𝑥𝑛
𝛽

(𝑡)

𝑑𝑡
𝛿3(x − x𝑛(𝑡)). 

Simetri menghendaki 

𝑝𝑛
𝛽

= 𝐸𝑛

𝑑𝑥𝑛
𝛽

𝑑𝑡
 

jadi 

𝑇𝛼𝛽 (x, 𝑡) = ∑ 𝑝𝑛
𝛼(𝑡)𝑝𝑛

𝛽
(𝑡)

𝐸𝑛
𝛿3(x − x𝑛(𝑡)). 

Dengan memasukkan kamiran fungsi delta terhadap masa, kita juga boleh tulis 

𝑇𝛼𝛽 (x, 𝑡) = ∑ ∫ 𝑑𝑡′ 𝑝𝑛
𝛼(𝑡′)

𝑑𝑥𝑛
𝛽

(𝑡′)

𝑑𝑡′
𝛿4(x − x𝑛(𝑡′)) 

dengan argumen fungsi delta berbentuk vektor-4 sekarang. Di bawah transformasi Lorentz, kita 

pergi ke masa wajar , memberikan 

𝑇𝛼𝛽 (x, 𝑡) = ∑ ∫ 𝑑𝜏 𝑝𝑛
𝛼(𝜏)

𝑑𝑥𝑛
𝛽

𝑑𝜏
𝛿4(x − x𝑛(𝜏)). 

Ini terdiri daripada vektor x vektor x skalar, maka ia tensor. 

 

Capahan arus, 

𝜕

𝜕𝑥𝑖 𝑇𝛼𝑖(x,𝑡) = − ∑ 𝑝𝑛
𝛼(𝑡)

𝑑𝑥𝑛
𝑖 (𝑡)

𝑑𝑡

𝜕

𝜕𝑥𝑛
𝑖

𝛿3(x − x𝑛(𝑡))

𝑛

 

= − ∑ 𝑝𝑛
𝛼(𝑡)

𝜕

𝜕𝑡
𝛿3(x − x𝑛(𝑡))

𝑛

 

= −
𝜕

𝜕𝑡
𝑇𝛼0(x,𝑡) + ∑ 𝑑𝑝𝑛

𝛼(𝑡)

𝑑𝑡𝑛 𝛿3(x − x𝑛(𝑡)). 

 

Kita kaitkan  

𝜕𝑇𝛼𝛽

𝜕𝑥𝛽 = 𝐺𝛼  

di mana G mewakili “ketumpatan daya”. 

𝐺𝛼 ≔ ∑ 𝛿3(x − x𝑛(𝑡))

𝑛

𝑑𝑝𝑛
𝛼(𝑡)

𝑑𝑡
 



= ∑ 𝛿3(x − x𝑛(𝑡))𝑛
𝑑𝜏

𝑑𝑡
𝐹𝑛

𝛼(𝑡). 

 

Untuk memerihalkan graviti menerusi kerelatifan am, kita perlu dapatkan kelengkungan ruangmasa 

akibat kehadiran jisim (atau jisim-tenaga). Kita mahukan persamaan dinamik bagi g(x). Kita mencari 

persamaan dengan kekovarianan am (yakni persamaan tensor) yang memberikan graviti Newton 

dalam had bukan kerelatifan. 

 

Pertimbangkan suatu zarah yang bergerak secara perlahan dalam medan pegun lemah.  Perlahan 

bermakna  

𝑑𝑥𝑖

𝑑𝜏
≪

𝑑𝑡

𝑑𝜏
 

di mana t = x0 dan  adalah masa wajar seperti biasa. Medan pegun pula bermakna semua terbitan 

masa g menghilang. Maka 

Γ00
𝜇

= −
1

2
𝑔𝜇𝜈 𝜕𝑔00

𝜕𝑥𝜈
. 

Untuk medan lemah, metrik ruangmasa hampir datar, iaitu 

g =  + h,   h << 1. 

Dengan itu, bagi medan lemah,  

Γ00
𝛼 = −

1

2
𝜂𝛼𝛽

𝜕ℎ00

𝜕𝑥𝜈 + 𝑂(ℎ2) 

yakni 

Γ00
𝑖 = +

1

2

𝜕ℎ00

𝜕𝑥𝑖
         dan         Γ00

0 = 0. 

Persamaan gerakan, daripada jatuhan bebas zarah berjisim seperti didapati dalam bahagian di atas, 

ialah 
𝑑2𝑥𝜇

𝑑𝜏2
+ Γ𝜌𝜎

𝜇 𝑑𝑥𝜌

𝑑𝜏

𝑑𝑥𝜎

𝑑𝜏
= 0. 

Ini memberikan 

𝑑2𝑥𝑖

𝑑𝜏2 = −Γ00
𝑖 (

𝑑𝑡

𝑑𝜏
)

2

 

untuk zarah perlahan kerana Γ0𝑗
𝑖 𝑑𝑥𝑗

𝑑𝜏

𝑑𝑡

𝑑𝜏
 kecil, kerana 

𝑑𝑥𝑗

𝑑𝜏
 kecil. Jadi 

𝑑2𝑥𝑖

𝑑𝜏2
= −

1

2

𝜕ℎ00

𝜕 𝑥𝑖
(

𝑑𝑡

𝑑𝜏
)

2

. 

Dan, kerana Γ00
0 = 0,  

𝑑2𝑡

𝑑𝜏2 = 0 

yang bermakna 
𝑑𝑡

𝑑𝜏
 adalah pemalar. Dengan itu, kita perolehi 

𝑑2𝐱

𝑑𝑡2
= −

1

2
∇ℎ00. 

Ini sepadan dengan mekanik Newton, 

𝑑2𝐱

𝑑𝑡2 = −∇𝜙 

dengan keupayaan (graviti)  = - GM/r. Ini bermakna h00 = 2 + pemalar. Dipertimbangkan syarat 

sempadan, khususnya, pada kedudukan ∞, adalah h00 = 0 dan  = 0, menjadikan h00 = 2. Ini 

bermakna g00 = - (1+2) Jadi dalam keadaan medan rendah dan halaju perlahan, kita perolehi 

dinamik Newton, dengan nilai g00 sedemikian. 

 

Bagi jirim bukan berkerelatifan, T00  . Bagi keupayaan Newtonan , ∇2𝜙 = 4𝜋𝐺𝜌. Jadi,  

∇2𝑔00 = −8𝜋𝐺𝑇00. 



Persamaan ini tidak pun takvarian Lorentz. Namun, kita boleh teka yang persamaan kovarian untuk 

apa-apa taburan jirim adalah berbentuk 

X = - 8GT 

di mana X merupakan tensor, terbina daripada metrik dan terbitan pertama dan keduanya, dengan 

X00 menjadi ∇2𝑔00 dalam had Newtonan. Juga, kita tahu yang T bersimetri (T = T) dan 

diabadikan (T
; =0). Kita perlukan X juga punyai ciri ini, tanpa kira apa metrik. Tensor yang boleh 

dibina daripada g dan terbitan pertama dan keduanya hanyalah g dan R. Tensor-2 (dua 

indeks) yang bersimetri hanyalah R, gR dan g. Satu kemungkinan ialah 

X =AR + BgR 

di mana A dan B adalah pemalar. Maka X
; =AR

; + B
R;.Namun, daripada identiti Bianchi, kita 

tahu 

2A
; = gR; 

ataupun 

R
; = ½ 

R; = ½ R;.. 

Maka 

X
; = 

 ( ½ A + B) R; = ( ½ A + B) R; 

Untuk X
; sifar, perlukan samada ½ A + B = 0 atau R; =  Tetapi R; =   mengimplikasikan 

𝜕𝑇𝜈
𝜇

𝜕𝑥𝜈
= 0, 

yang tidak umumnya benar, misalnya bagi kes jirim tak homogen bukan berkerelatifan.  Maka 

dengan itu B = - ½ A, dan X = A(R - ½ gR) = AG di mana G ialah tensor Einstein. Sekarang kita 

tentukan A dengan mempertimbangkan had Newtonan. Dalam keadaan bukan berkerelatifan, 

sewajarnya |Tij| << |T00|. Maka, |Gij| << |G00|, yang bermakna Rij  ½ gijR. Juga, bagi medan lemah 

g  , R  Rkk – R00, maka R  (3/2) R – R00 iaitu R  2R00. Maka 

X00  A (R00 – ½ g00R) 

 2AR00. 

Kita tahu R00 = R
00, dan 

𝑅𝜆𝜇𝜈𝜅 = 1

2
[

𝜕2𝑔𝜆𝜈

𝜕𝑥𝜅𝜕𝑥𝜇
−

𝜕2𝑔𝜇𝜈

𝜕𝑥𝜅𝜕𝑥𝜆
−

𝜕2𝑔𝜆𝜅

𝜕𝑥𝜈 𝜕𝑥𝜇
+

𝜕2𝑔𝜇𝜅

𝜕𝑥𝜈𝜕𝑥𝜆
] + sebutan peringkat kedua. 

Bagi medan pegun, terbitan masa menghilang, dan R0000  0. Juga 

𝑅𝑖0𝑗0 ≅
1

2

𝜕2𝑔00

𝜕𝑥𝑖𝜕𝑥𝑗 

dan 

𝑅00 =
1

2
∇2𝑔00 

maka 

𝑋00 = 𝐴∇2𝑔00. 

Menghendaki 𝐺00 = ∇2𝑔00 bermakna A = 1, memberikan 

G = - 8GT. 

Bentuk lain, yang setara, boleh diperolehi dengan mengecutkan persamaan  

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = −8𝜋𝐺𝑇𝜇𝜈 

dengan g, memberikan 

𝑅 − 2𝑅 = −8𝜋𝐺𝑇𝜇
𝜇

 

dan seterusnya 

𝑅𝜇𝜈 = −8𝜋𝐺(𝑇𝜇𝜈 − 1

2
𝑔𝜇𝜈𝑇𝜆

𝜆). 

Maka dalam ruang kosong, 

R = 0. 

Kemungkinan menambahkan pemalar kamiran kepada persamaan medan membolehkan 

dimasukkan sebutan g di sebelah kiri, memberikan, 



𝐺𝜇𝜈 + Λ𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈, 

Persamaan medan Einstein. Tensor Einstein, 

𝐺𝜇𝜈 ≡ 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 

dan  = 8G.  dikenali sebagai pemalar kosmologi. Untuk kemudahan, dalam banyak analisis, ia 

dianggap 0. 

 

 

 

11.10 Beberapa Penyelesaian 

 

Tensor Einstein  G punyai 10 komponen tetapi 4 identiti Bianchi bagi G
, mengekang bilangan 

persamaan bebas kepada 6 sahaja. Walaupun kita ada 10 pembolehubah g yang tak diketahui, 

hanya ada 4 darjah kebebasan. Ini muncul daripada kebebasan membuat transformasi kordinat am,  

x → x’ +  

g = - (; + ;) 

yakni persamaan medan hanya boleh menentukan metrik sehingga kepada suatu transformasi 

kordinat am. Bandingkan ini dengan persamaan Maxwell, di mana kita ada 4 yang tak diketahui, A, 

dengan 4 persamaan F = 0, tetapi  F = 0 mengurangkan bilangan persamaan kepada 3. Satu 

darjah kebebasan yang baki, yang sepadan dengan transformasi tolok,  A → A +  Biasanya, 

suatu pilihan tolok dibuat untuk menetapkan tolok ini.  Suatu kemungkinan ialah syarat kordinat 

harmonik, 

𝑔𝜇𝜈Γ𝜇𝜈
𝜆 = 0. 

 

 Ada beberapa penyelesaian masyhur bagi persamaan medan Einstein.  Penyelesaian-penyelesaian 

ini biasanya bagi sesuatu keadaan khas. 

 

Suatu penyelesaian bagi R = 0 ialah ruang Minkowski, iaitu dengan metrik g00 = -1, g11 = g22 = g33 = 

1, dengan yang lain 0. Ruang-masa rata. 

 

Satu penyelesaaian yang masyhur ialah penyelesaian Schwarzchild bagi metrik statik yang bersimetri 

sferaan. Ini pakai bagi bintang yang tak berputar, misalnya.  

 

Mula-mula kita tuliskan bentuk am untuk metrik statik bersimetri sferaan dalam ruang melengkung. 

Ini bermakna kita jangkakan selang masa wajar d2 tak bergantung kepada t dan hanya bergantung 

kepada dx dan x menerusi dx2, x.dx dan x2 = r2. Maka bentuk paling am ialah 

d2 = F(r) dt2 - 2E(r) dt x.dx – D(r) (x.dx)2 – C(r) dx2 

di mana F, E, D, dan C adalah pelbagai fungsi terhadap r. Dalam kordinat kutub sferaan 3 dimensi, 

d2 = F(r) dt2 – 2rE(r) dt dr – r2D(r) dr2 – C(r) (dr2 + r2 d 2 +r2 sin2 d 2). 

Definisikan t’ = t + (r), dan mengset 
𝑑𝜙

𝑑𝑟
= −

𝑟𝐸(𝑟)

𝐹(𝑟)
 menghapuskan E(r) (dan memodifikasikan D(r)). 

Akhirnya, dengan membiarkan r’2 = C(r) r2, kita perolehi metrik (dengan menggantikan t’ dengan t 

dan r’ dengan r) 

d2 = B(r) dt2 – A(r) dr2 – r2 (d 2 + sin2 d 2) 

yang dikatakan metrik Schwarzchild dalam bentuk piawai. 

 

Kita mencari mencari penyelesaian kepada persamaan R = 0 (yakni di luar bintang). Jadi langkah 

seterusnya kita nilaikan 
 dan R. Gunakan Γ𝜇𝜈

𝜆 =
1

2
𝑔𝜆𝜌 (

𝜕𝑔𝜌𝜇

𝜕𝑥𝜈
+

𝜕𝑔𝜌𝜈

𝜕𝑥𝜇
−

𝜕𝑔𝜇𝜈

𝜕𝑥𝜌
) dengan grr = A(r), 



g = r2, g = r2sin2, gtt = -B(r), dan selainnya sifar, yang, disongsangkan, grr = 1/A(r), g = 1/r2, g = 

1/r2sin2, gtt = -1/B(r), dan selainnya sifar. 
 yang bukan sifar hanyalah  

Γ𝑟𝑟
𝑟 =

1

2𝐴(𝑟)

𝑑𝐴(𝑟)

𝑑𝑟
, Γ𝜃𝜃

𝑟 =
−𝑟

𝐴(𝑟)
,  Γ𝜙𝜙

𝑟 =
−𝑟sin2 𝜃

𝐴(𝑟)
,  Γ𝑡𝑡

𝑟 =
1

2𝐴(𝑟)

𝑑𝐵(𝑟)

𝑑𝑟
, 

Γ𝑟𝜃
𝜃 = Γ𝜃𝑟

𝜃 =
1

𝑟
,  Γ𝜙𝜙

𝜃 = − sin 𝜃 cos𝜃, Γ𝑟𝜙
𝜙

= Γ𝜙𝑟
𝜙

=
1

𝑟
,  Γ𝜃𝜙

𝜙
= Γ𝜙𝜃

𝜙
= cot 𝜃,   

dan Γ𝑡𝑟
𝑡 = Γ𝑟𝑡

𝑡 =
1

2𝐵(𝑟)

𝑑𝐵(𝑟)

𝑑𝑟
. Adalah 𝑅𝜇𝜅 =

𝜕Γ𝜇𝜆
𝜆

𝜕 𝑥𝜅
−

𝜕Γ𝜇𝜅
𝜆

𝜕𝑥𝜆
+ Γ𝜇𝜆

𝜂
Γ𝜅𝜂

𝜆 − Γ𝜇𝜅
𝜂

Γ𝜆𝜂
𝜆 , maka  

𝑅𝑟𝑟 =  
𝐵′′(𝑟)

2𝐵(𝑟)
−

1

4
(

𝐵′(𝑟)

𝐵(𝑟)
)(

𝐴′(𝑟)

𝐴(𝑟)
+

𝐵′ (𝑟)

𝐵(𝑟)
) −

1

𝑟

𝐴′(𝑟)

𝐴(𝑟)
, 

𝑅𝜃𝜃 =  −1 +
𝑟

2𝐴(𝑟)
(−

𝐴′(𝑟)

𝐴(𝑟)
+

𝐵′ (𝑟)

𝐵(𝑟)
)+

1

𝐴(𝑟)
, 

𝑅𝜙𝜙 = sin 𝜃𝑅𝜃𝜃, dan 

𝑅𝑡𝑡 =  −
𝐵′′(𝑟)

2𝐴(𝑟)
+

1

4
(

𝐵′(𝑟)

𝐴(𝑟)
) (

𝐴′(𝑟)

𝐴(𝑟)
+

𝐵′ (𝑟)

𝐵(𝑟)
)−

1

𝑟

𝐵′(𝑟)

𝐴(𝑟)
, 

dengan komponen-komponen sifar. 

 

Sekarang kita mahu selesaikan persamaan-persamaan R = 0. Kita ada syarat sempadan g → 

metrik Minkowski, dengan r → ∞ . Metrik Minkowski dalam kordinat kutub sferaan ialah 

d2 = dt2 – dr2 – r2(d2 + sin2 d2) 

jadi syarat sempadan berikan A(r) → 1 dan B(r) → 1  apabila r → ∞ . Mula-mula perhatikan bahawa 
𝑅𝑟𝑟

𝐴
+

𝑅𝑡𝑡

𝐵
=

−1

𝑟𝐴
(

𝐴′

𝐴
+

𝐵′

𝐵
) jadi jika A dan B bebas, 

𝐴′

𝐴
=

−𝐵′

𝐵
 atau AB = pemalar = 1 katakan. 

Menggantikan A(r) sebagai 1/B(r) memberikan  

R = -1 + B’(r)r + B(r)      dan 

𝑅𝑟𝑟 =  
𝐵′′(𝑟)

2𝐵(𝑟)
+

𝐵′ (𝑟)

𝑟𝐵(𝑟)
=

𝑅′
𝜃𝜃(𝑟)

2𝑟𝐵(𝑟)
. 

Jadi, jika kita ada R sifar, kita ada R = 0. Untuk R =  dikehendaki 
𝑑

𝑑𝑟
(r B(r)) = 1. Jadi rB(r) = r + c, 

atau B(r) = 1 + c/r. Jika kita mencari penyelesaian untuk medan dengan jisim pusat M maka 

gtt → – 1 – 2 = – 1 + 2Gm/r dengan r → ∞. Tetapi gtt = – B(r), jadi c = – 2MG dan dengan itu kita 

perolehi 

𝐵(𝑟) = 1 −
2𝑀𝐺

𝑟
     dan 

𝐴(𝑟) = [1 −
2𝑀𝐺

𝑟
]

−1

, memberikan metrik Schwartzchild, 

𝑑𝜏2 = [1 −
2𝑀𝐺

𝑟
]𝑑𝑡2 − [1 −

2𝑀𝐺

𝑟
]

−1

𝑑𝑟2 − 𝑟2𝑑𝜃2 − 𝑟2 sin2 𝜃 𝑑𝜙2 

bagi ruangmasa kosong statik keliling suatu jisim M, dalam kordinat sferaan. 

 

Penyelesaian Reissner-Nordstrom pula ialah bagi ruangmasa diluar suatu jasad bersimetri sferaan 

bercas, dengan jisim M dan cas elektrik Q. Metriknya: 

d𝜏2 = [1 −
2𝑀𝐺

𝑟
+

4𝑀𝐺𝑄2

𝑟2
] 𝑑𝑡2 − [1 −

2𝑀𝐺

𝑟
+

4𝑀𝐺𝑄2

𝑟2
]

−1

𝑑𝑟2 − 𝑟2𝑑Ω2 

dengan penggunaan A = (Q/r, 0). 

 

Suatu penyelesaian, bagi jasad berputar, dengan simetri paksian, disebut penyelesaian Kerr.  Kerr 

menyelesaikan untuk R = 0 dan Neuman telah amkannya  kepada G = – 8GT. Metrik terhasil 

ialah 

𝑑𝜏2 = 𝑑𝑡2 −
2𝑀𝑟𝐺

𝜌2
[𝑎 sin2 𝜃 𝑑𝜙 − 𝑑𝑡]2 + (𝑟2 + 𝑎2) sin2 𝜃 𝑑ϕ2 +

𝜌

Δ
𝑑𝑟2 + 𝜌2𝑑𝜃2 

dengan (r) := r2 – 2MGr+ a2 dan 2(r,) := r2 + a2 cos2 .  Pembolehubah m mewakili jisim jasad, dan 

ma adalah momentum sudut pada ∞. 



 

Perhatikan penyelesaian Schwarzchild mempunyai kesingularan kordinat (akibat pemilihan sistem 

kodinat tertentu) apabila r = 2MG (“jejari Schwarzchild”) Adakah ini kesingularan sebenar? Ini boleh 

disiasat menggunakan suatu skalar, yang tidak bergantung kepada kordinat. Misalnya,  

𝑅𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌𝜎 =
48𝑀2𝐺2

𝑟6
. 

Pembolehubah ini bertelatah baik pada r = 2MG, namun mencapah pada r = 0. Namun, pada jejari 

Schwarzchild, ada perubahan dalam telatah metrik. Pada r = 2MG, gtt = 0 dan grr → ∞. Pada jejari 

Schwarzchild juga, gtt dan grr bertukar tanda. Di luar jejari Schwarchild, gtt > 0 dan grr < 0, sementara 

dalam lingkungannya, gtt < 0 dan grr > 0. Di luar, t adalah seperti-masa dan r seperti-ruang, 

sementara dalam jejari Schwarzchild, t jadi seperti-ruang sementara r seperti-masa. Walaupun 

pengembara yang mendekati ‘lohong hitam’ sampai kepadanya dalam masa wajar (yang relatif 

kepadanya) yang terhingga, bagi seorang pemerhati diluar jejari Schwarzchild, masa yang dia ukur 

bagi pengembara tadi memasuki jejari itu adalah tak terhingga. Untuk itu, jarak jejari Schwarzchild 

ini dirujuk ‘ufuk peristiwa’. Selepas itu, Kawasan di dalam jejari Schwarchild tidak dapak dicerap oleh 

seorang pemerhati di luar. Kejatuhan graviti pada r=0 juga tak dapat dicerap. Apa-apa jasad, dan 

bahkan cahaya juga, yang memasuki lohong hitam ini, terus tak dapat lepas keluar, kerana 

kelengkungan yang begitu dahsyat. 

 

 

11.11 Graviti Kuantum 

 

Oleh kerana tiga medan keunsuran yang lain dapat diperihalkan dengan baik sebagai teori medan 

kuantum, ada desakan untuk mencari pemerihalan medan kuantum kepada graviti.  Bagaimanakah 

cara mengahwini teori medan kuantum dengan kerelatifan am? 

 

Yang paling jelas, oleh kerana skala jarak graviti sangat besar berbanding daya-daya kuantum, ialah 

untuk menjalankan pengkuantuman daya-daya kuat, lemah dan electromagnet di atas ruang-masa 

latar yang melengkung. Mungkin pada amnya, tidak banyak kesan ketara dalam ruang-masa yang 

melengkung secara perlahan. Dengan transformasi kordinat, tanganan ruang melengkung tidak 

berbeza daripada tanganan ruang rata. Kesan kelengkungan dijangka bererti dalam rantau dengan 

medan graviti yang tinggi seperti dalam suatu lohong hitam. 

 

Dalam ruang melengkung, Lagrangean Dirac, 
𝑖

2
𝜓̅(𝛾𝑎𝜕𝑎 − 𝑚)𝜓 

menjadi 
𝑖

2
𝜓̅(𝛾𝜇𝐷𝜇 − 𝑚)𝜓 

di mana D mewakili pembezaan kovarian. D diberi dalam bahagian 11.7 di atas. 

 

Apapun, latar ruang-masa tidaklah bebas melengkung. Kita mahu menjaga aturan jujukan masa dan 

kebersebaban. Masalah bila ruang bertukar menjadi seperti masa dan masa seperti ruang, dan ini 

bagus dielakkan. Bagaimana hendak difahami teori medan kuantum merentasi ufuk peristiwa lohong 

hitam? 

 

Secara mudah, kita boleh cuba lihat fenomena kuantum di sekitar lohong hitam.  Apa yang boleh 

berlaku ialah pengeluaran pasangan zarah-antizarah dekat permukaan lohong hitam itu, yang boleh 

berlaku secara pantas. Biasanya zarah-antizarah ini musnahabis seula sebelum ia dapat dikesan. 



Namun kalau satu daripadanya ditelan ke dalam lohong hitam dan tidak dilihat lagi, dan yang satu 

lagi lepas, yang terlepas ini boleh dicerap luar. Jadi, lohong hitam menyinar. Ini dikenali dengan 

sinaran Bekenstein-Hawking. Apabila lohong hitam menyinar, ia bekehilangan tenaga/jisim dan 

maklumat. 

 

Teori medan kuantum amat berjaya dalam memerihalkan daya-daya subatom. Kiraan usikan seperti 

tukarganti kuantum daya dapat dibuat dalam pemerihalan itu. Cubaan juga boleh dibuat untuk 

memerihalkan graviti dalam bentuk teori medan kuantum berusikan. Dalam kes ini, dianggap 

bahawa metrik adalah metrik rata, ditambah dengan usikan kecil, asas salingtindak, yang 

dikuantumkan, memberikan teori medan spin-2 yang tinggal di ruang rata. Teori yang terhasil 

mencapah dan tidak ternormalisasi semula. Didapati hanya graviti tanpa jirim dengan rajah 

Feynmann sehingga satu gelung sahaja yang terhad; bila dimasukkan jirim, dan dibenarkan dua 

gelung dan lebih, kita dapat teori yang tak ternormalsemula. 

 

Satu pendekatan langsung kepada penyatuan kuantum dan kerelatifan ialah untuk 

mengkuantumkan graviti secara berkanun. Di sini, operator kuantum yang sepadan menggantikan 

kuantiti fizikan. Ini bermakna, metrik berubah menjadi operator kuantum. 

 

Dalam perumusan Hamiltonian mekanik klasik biasa, pendakap Poisson adalah konsep penting. 

Suatu sistem koordinat berkanun terdiri daripada pembolehubah kedudukan dan momentum 

berkanun atau teritlak yang memenuhi hubungan Poisson-Bracket berkanun, 

{𝑞𝑖, 𝑝𝑗} = 𝛿𝑖𝑗 

di mana pendakap Poisson diberikan oleh 

{𝑓, 𝑔} = ∑ (
𝜕𝑓

𝜕𝑞𝑖

𝜕𝑔

𝜕𝑝𝑖
−

𝜕𝑓

𝜕𝑝𝑖

𝜕𝑔

𝜕𝑞𝑖

)

𝑁

𝑖=1

 

untuk fungsi ruang fasa sembarangan f(qi,pj) dan g(qi,pj). Dengan menggunakan pendakap Poisson, 

persamaan Hamilton boleh ditulis semula sebagai, 

 𝑞̇𝑖 = {𝑞𝑖,𝐻} 
 𝑝̇𝑖 = {𝑝𝑖, 𝐻} 

Persamaan ini menggambarkan "aliran" atau orbit dalam ruang fasa yang dihasilkan oleh 

Hamiltonian. Diberi suatu fungsi ruang fasa F(q,p), kita ada 

   
𝑑

𝑑𝑡
𝐹(𝑞𝑖 , 𝑝𝑖) = {𝐹, 𝐻}. 

Dalam pengkuantuman berkanun, pembolehubah-pembolehubah ruang fasa dipromosikan menjadi 

operator kuantum dalam ruang Hilbert, dan pendakap Poisson antara pembolehubah ruang fasa 

digantikan dengan hubungan komutasi berkanun: 

  [𝑞, 𝑝̂] = 𝑖ℏ 
Dalam perwakilan kedudukan, hubungan komutasi ini direalisasikan oleh pilihan: 

  𝑞𝜓(𝑞) = 𝑞𝜓(𝑞)  dan 𝑝̂𝜓(𝑞) = −𝑖ℏ
𝑑

𝑑𝑞
𝜓(𝑞) 

dan dinamik diperihal persamaan Schrödinger, 

  𝑖ℏ
𝜕

𝜕𝑡
𝜓 = 𝐻𝜓. 

𝐻 adalah operator terhasil daripada Hamiltonan H(q,p) dengan penggantian 𝑞 → 𝑞 = 𝑞 dan 𝑝 → 𝑝̂ =

−𝑖ℏ
𝑑

𝑑𝑞
.   

 

Bagi kerelatifan am, kedudukan teritlak adalah gij. Ini berada di atas hipersatah seperti ruang t = t0.t 

atau x0 perlu diasingkan, sebab ia terbabit dalam menerbitkan momentum teritlak, dan dalam 



Hamiltonan. Momentum teritlak, 𝜋𝑖𝑗 =
𝛿𝑆

𝛿𝑔̇𝑖𝑗
 di mana tindakan S ialah kamiran Langrangean L. Secara 

berkanun, 𝐻 = ∑ 𝜋𝑖𝑗𝑔̇𝑖𝑗 − 𝐿. L pula membabitkan gij dan 𝑔̇𝑖𝑗. Jadi dengan pengkuantuman kanunan,  

𝑔𝑖𝑗 → 𝑔̂𝑖𝑗, memberikan ketakpastian dalam ukuran gij. 

 

Untuk pemerihalan Hamiltonan, yang membabitkan pendakap Poisson, masa untuk sistem perlu 

ditentukan. Ruang-masa perlu diuraikan kepada hiperpermukaan berlainan t. Uraian ruang-masa 

3+1 kepada suatu keluarga hiperpermukaan seakan ruang 3 dimensi terparameter oleh suatu 

kordinat masa (sembarangan) membabitkan pengungkapan metrik berbentuk 

 𝑔𝜇𝜈 = (
−𝑁2 + 𝑁𝑖𝑁𝑗𝑔𝑖𝑗 𝑁𝑗

𝑁𝑖 𝑔𝑖𝑗
). 

N ialah fungsi lelap, diberi oleh dt = N(x,x0) dx0. 

 

Jestru, pengkuantuman berkanun rumit dengan kekeliruan masa kerelatifan dan masa dinamik, dan 

juga membabitkan pengkuantuman metrik. 

 

Pendekatan yang agak berjaya dan menarik, dari segi matematiknya, dalam menyatukan graviti 

dengan daya medan kuantum yang lain ialah menerusi supersimetri. Supersimetri adalah simetri di 

antara boson dan fermion.  Seperti ketakvarianan terhadap transformasi tolok tempatan 

memberikan salingtindak tolok, ketakvarianan terhadap supersimetri tempatan memberikan 

supergraviti. 

 

Supergraviti bentuk termudah memerihalkan saling tindak graviti dengan suatu medan Majorana 

spin 3/2. Medan Majorana bercampur keheliksan. Tanpa graviti, tindakan untuk medan spin 3/2 

ialah 

 −
1

2
∫ 𝜖𝜇𝜈𝜌𝜎𝜓̅𝜇𝛾5𝛾𝜈𝜕𝜌𝜓𝜎𝑑4𝑥 

sementara tindakan supergraviti ialah (dengan unit di mana √32𝜋𝐺 = 1), 

 𝑆 = −
1

2
∫ 𝑑4 𝑥[𝑒𝑒𝑎

𝜇
𝑒𝑏

𝜈𝑅𝜇𝜈
𝑎𝑏 (𝜔) + 𝑖𝜖𝜆𝜇𝜈𝜌𝜓̅𝜆𝛾5𝛾𝜇𝐷𝜈𝜓𝜌]. 

Graviti di sini ditulis dalam sebutan vierbein. Ingat  

 𝑔𝜇𝜈(𝑥) =
𝜕𝜉𝛼

𝜕𝑥𝜇

𝜕𝜉𝛽

𝜕𝑥𝜈
𝜂𝛼𝛽. 

Atau,  

 𝑔𝜇𝜈(𝑥) =
𝜕𝜉𝑎

𝜕𝑥𝜇

𝜕𝜉𝑏

𝜕𝑥𝜈
𝜂𝑎𝑏 ≡ 𝑒𝜇

𝑎(𝑥)𝑒𝜈
𝑏(𝑥)𝜂𝑎𝑏. 

e ialah det ea = -g. Adapun 𝑅𝜇𝜈
𝑎𝑏 (𝜔) adalah fungsi terhadap sambungan spin . Pembezaan 

kovarian, diberi 

 𝐷𝜌𝜓𝜎 ≡ (𝜕𝜌 + 𝜔𝜌
𝑎𝑏Σ𝑎𝑏)𝜓𝜎, 

di mana ab adalah unsur-unsur kumpulan Lie SO(3,1) untuk transformasi Lorentz. (Dalam 

perwakilan lazim, 

 Σ0𝑖 = 𝑖 (𝜎 𝑖 0
0 −𝜎 𝑖

),  Σ𝑖𝑗 = 𝜖𝑖𝑗𝑘 (𝜎𝑘 0
0 𝜎𝑘

), 

di mana i adalah matriks Weyl.)  

 

Tindakan ini didapati takvarian terhadap trnasformasi supersimetri tempatan, 

 𝛿𝑒𝜇
𝑎 = 𝑖𝜀𝛾̅𝑎𝜓𝜇 

 𝛿𝜓𝜇 = 2𝐷𝜇𝜀 

 𝛿𝜔𝜇
𝑎𝑏 = 𝐵𝜇

𝑎𝑏 − 1

2
𝑒𝜇

𝑏𝐵𝑐
𝑎𝑐 + 1

2
𝑒𝜇

𝑎𝐵𝑐
𝑏𝑐 

di mana 



 𝐵𝑎
𝜆𝜇

= 𝑖𝜀𝛾̅5𝛾𝑎𝐷𝜈𝜓𝜌𝜖𝜆𝜇𝜈𝜌. 

Di sini (x) merupakan parameter infinitesimal transformasi supersimetri. Ia bukan nombor biasa 

tetapi adalah unsur “ganjil” (berantikomut) suatu algebra Grassman.  Medan fermion mengambil 

nilai Grassman ganjil, sementara boson genap. Ini supaya pada tahap kuantum, medan-medan 

fermion antikomut dan medan-medan boson komut. 

 

Model ini berguna sebab, tambahan kepada ia punyai supersimetri tempatan, ia juga dapat 

menyelesaikan masalah gandingan graviti dengan medan spin 3/2. Dalam ruang rata, lagrangean tak 

varian terhadap transformasi tolok  

  𝛿𝜓𝜇(𝑥) = 𝜕𝜇𝛼(𝑥) 

yang, bersama dengan persamaan medan 

  𝑅𝜆 ≡ 𝜖𝜆𝜇𝜈𝜌𝛾𝜇𝜕𝜈𝜓𝜌 = 0 

memberi identiti 

𝜕𝜆 𝑅𝜆 = 0. 

Namun, dalam ruang lengkung, kekonsistenan seperti ini tidak lagi wujud, sehingga kita perkenalkan 

terbitan kovarian D seperti di atas. Ini memberikan persamaan pergerakan yang konsisten. 

Pemerihalan sistem didapati dengan menyelsaikan . 

 

 

11.12 Daya tolok daripada Kelengkungan Ruang 

 

Satu lagi pendekatan ke arah penyatuan graviti dan daya-daya laian ialah menerusi model Kaluza-

Klein. Jika graviti boleh diperihalkan sebagai akibat kelengkungan ruang-masa, mungkin daya lain 

juga boleh difahamkan sedemikian juga. Untuk ini, dimensi tambahan ruang-masa diperlukan. 

 

Keelektromagnetan boleh dimasukkan dengan menghendaki ruang-masa berdimensi 4+1, dengan 

kelengkungan dimensi kelima lebihan itu menimbulkan daya itu.  Inilah model Kaluza-Klein asal. 

Dimensi lebihan itu berbulat, atau kompak, dan berkala. Dimensi lebihan ini memberikan kesan 

daya, namun ia tidak dapat dicerapi, kerana jejarinya R yang sangat kecil. Sekurang-kurangnya ia 

tidak dapat dapat dicerapi pada jarak gelombang yang lebih besar daripada jejari itu. Had atas 

tenaga sebelum dimensi lebihan ini ‘kelihatan’ ialah hc/R.  

 

 
Ruang-masa 5 dimensi dengan satu ruang dimensi dipadatkan ke atas bulatan yang kecil.  

 

Simetri bulatan dimensi tambahan ini memberikan simetri U(1) keelektromagnetan.  Teori Kaluza 

mempertimbangkan hanya graviti dalam ruang-masa 5 dimensi (diindeks huruf besar roman), adalah 

naik-turun metrik terhadap ruang rata, 

 gMN = MN + hMN  (M,N = ,5). 



hMN terurai kepada zarah-zarah h, graviton spin 2, h5, foton, dan suatu skalar h55. Kaluza-Klein 

mempertimbangkan medan skalar dalam 5 dimensi. Jika y mewakili dimensi kelima, tindakan 

berkenaan ialah 

   𝑆5 = − ∫ 𝑑4𝑥𝑑𝑦 𝑀∗[|𝜕𝜇𝜙|2 + |𝜕𝑦𝜙|2 + 𝑔5
2|𝜙|4]. 

y terpadat dalam bulatan berjejari R: 

   y = y + 2R. 

Kembangkan medan kompleks skalar sebagai siri Fourier, 

   𝜙(𝑥, 𝑦) = ∑ 𝑒
𝑖𝑛𝑦

𝑅 𝜙(𝑛)(𝑥)∞
𝑛=−∞ = 𝜙(0)(𝑥) + ∑ 𝑒

𝑖𝑛𝑦

𝑅 𝜙(𝑛)(𝑥)𝑛≠0 . 

Kamiran terhadap y memberikan S5 = S4
(0) + S4

(n), dengan 

   𝑆4
(0)

= − ∫ 𝑑4𝑥 2𝜋𝑅𝑀∗ [|𝜕𝜇𝜙(0)|
2

+ 𝑔5
2|𝜙(0)|

4
], 

dan 

  𝑆4
(𝑛)

= − ∫ 𝑑4𝑥 2𝜋𝑅𝑀∗ ∑ [|𝜕𝜇𝜙(𝑛)|
2

+ (
𝑛

𝑅
)

2
|𝜙(𝑛)|

2
]𝑛≠0 +  gandingan kuartik. 

S4
(0) mewakili suatu skalar tanpa jisim  (terma dinamik + terma gandingan-4). S4

(n) pula mewakili 

suatu ‘menara’ mod-mod berjisim, dengan jisim-jisim (n/R). Bergantung kepada nilai R, ini 

merupakan zarah-zarah berat yang tidak berpengaruh pada tenaga rendah. Oleh kerana peminuman 

tidakan tidak dipengaruhi pekali malar kepada tindakan tersebut, perhatikan kita boleh perihalkan 

teori 5 dimensi sebagai teori 4 dimensi: 

   𝑆4
(0)

= − ∫ 𝑑4𝑥 [|𝜕𝜇𝜙(0)|
2

+ 𝑔4
2|𝜙(0)|

4
] 

dengan meletakkan  

   𝑔4
2 =

𝑔5
2

2𝜋𝑅𝑀∗
. 

Begitulah juga untuk graviti dan medan tolok, 

   − ∫ 𝑑4𝑥 [
1

16𝜋𝐺𝑁
𝑅(0) +

1

4𝑔4
2 𝐹(0)𝜇𝜈𝐹𝜇𝜈

(0)
] + ⋯ 

dengan  

   𝐺𝑁 =
1

16𝜋2𝑅𝑀∗
3. 

Kekuatan salingtindak ditindas oleh jejari dimensi lebihan. Dalam 5 dimensi, g5 patutnya berusikan, 

namun dalam perspektif 4 dimensi, g4 patutnya berganding kuat. Gandingan tolok dalam 5 dimensi 

punyai dimensi jisim negatif, maka teori ini tidak ternormal semula. Dalam pandangan 4 dimensi, ini 

adalah akibat mod-mod Kaluza-Klein yang tercapai pada skala tenaga tinggi. M* merupakan 

penggalan bagi teori ini, yang kita tangani sebagai teori berkesan di bawah skala jisim ini.   

 

Menurut hukum Gauss, medan daya dari suatu cas titik perlu dikamirkan atas permukaan sfera (2 

dimensi ruang) untuk 4 dimensi,  

   ∮ 𝐄 ∙ 𝐝𝐒
 

𝑆2
= 𝑄 

dan permukaan hipersfera (3 dimensi) untuk 5 dimensi,  

   ∮ 𝐄 ∙ 𝐝𝐒
 

𝑆3
= 𝑄 

memberikan masing-masing, medan dan keupayaan, 

   𝐸 ∝
1

𝑟2
 ,  𝛷 ∝

1

𝑟
 

dan 

   𝐸 ∝
1

𝑟3
 ,  𝛷 ∝

1

𝑟2
 . 

Kes kedua berlaku bila r kecil. Namun bila r >> R, bila kamiran ialah atas permukaan hiperlempeng, 

yang luasnya berkadaran r2, kes pertama, hukum kuasadua songsang, berlaku seperti biasa. 

 



Untuk memasukkan daya-daya tolok lain, ruang-masa dengan dimensi yang lebih tinggi diperlukan. 1 

cas elektromagetan, 3 jenis perisa lemah, dan 3 warna QCD bermakna diperlukan sekurang-

kurangnya 6 dimensi ruang tambahan, untuk memasukkan kesemua daya-daya tolok.  


